CRISPR(clustered regularly interspaced short palindromic repeats)基因编辑技术通过精准改变细胞DNA序列,控制细胞命运及表型,是有望从根本上改变疾病治疗的新技术。由于眼球独特的生理构造,基因编辑疗法在治疗眼科疾病方面的应用具有明显的优势。目前,CRISPR基因编辑疗法治疗10型Leber先天性黑矇(Leber congenital amaurosis 10,LCA10)的临床试验已经展开,治疗其他多种眼科疾病的临床试验也即将开始。随着新一代CRISPR基因编辑技术的发展,基因编辑疗法有望为眼科疾病的治疗提供新的手段。
全文
基因编辑是通过导入、修改、沉默特定基因,以研究基因功能,构建疾病模型,以及治疗特定疾病的一种新兴技术[1]。CRISPR(clustered regularly interspaced short palindromic repeats)技术的发明,大大提高了基因编辑的灵活性,并加快了基因编辑技术从实验室走向临床治疗的步伐[2]。眼球独特的生理结构,使眼科疾病在基因编辑疗法的应用上具有先天的优势。眼球体积较小,需要的治疗载体较少。眼部区域具有免疫赦免,这既可避免外源性物质引起的炎症和免疫反应,也有利于基因编辑载体维持其活性。同时,慢病毒和A AV等载体介导的眼科疾病基因疗法,不会引起全身性反应[3]。另外,多种严重眼科疾病与基因突变密切相关。这些特点使眼科疾病的治疗对基因编辑疗法有着强烈的需求,为其在眼科疾病治疗中的率先应用创造了条件。本文将从CRISPR/Cas9(Cas9,CRISPR associated protein 9,曾使用Cas5、Csn1、Csx12等名称)基因编辑技术的发展、基因编辑疗法在眼科疾病治疗中应用的现状、以及CRISPR基因编辑技术的最新发展等几个方面,介绍CRISPR基因编辑技术及其在眼科疾病治疗中应用的前沿进展。基因疗法的载体及递送策略,相关综述文献已有阐述[4],在此将不再赘述。
2012年,Jennifer Doudna和Em manu el l e Charpenier将CRISPR/Cas9系统改造,实现了由引导RNA(guide RNA)介导的DNA靶向切割[2]。该系统由Cas9核酸内切酶和单链引导RNA(single-stranded guide RNA,sgRNA)所组成(图1 )。SgRNA引导Cas9特异结合与sgRNA上一段RNA序列互补的DNA序列,随后在附近将DNA双链切割。被切割后的DNA形成双链断裂(double strand break,DSBs),DSBs会激活内源性DNA损伤修复机制[8]。例如非同源性末端接合(nonhomologous end-joining,NHEJ)在将DSBs重新连接的过程中,会产生插入或删除突变(indel),而indel突变往往造成编码位移(frame-shift)以及基因敲除[9-10]。如用多个sgRNA介导多处DSBs的形成,则会促进DSBs之间大片段的染色质重排(genomic rearrangement),如染色体内易位(intrachromosomal translocation)和染色体内倒位(intrachromosomal inversions)[11-13]。这些机制均可实现高效的基因敲除。
单碱基编辑是一种不经DSBs介导而引入点突变的技术,以保留Cas9蛋白单链切割能力的nCas9为基础,融合腺核苷去氨酶(Adenosine deaminase),介导靶向的去氨基反应[37-38]。目前已有多种单碱基编辑系统面世,包括CBEs(介导C到T编辑)[37-38]、ABEs(介导A到G编辑)[39]、GBEs(glycosylase base editors,介导C到G编辑)[40]等。单碱基编辑器(以CBEs为例)首先对靶向DNA单链进行切割,随后系统中的去氨酶融合到切割部位,催化去氨基反应。去氨基反应将C转变为U,导致U-G错配。U-G错配随后会被内源DNA修复机制修改为T-A,完成C-T编辑。其他单碱基编辑系统,根据融合酶的不同,作用机制有所不同。但总体来说,单碱基编辑既不依赖于细胞周期[41],也不引入DSBs,有望被广泛应用于眼科多种疾病的治疗。
除上述系统外,还有2个研究小组[43-44]独立开发了转座子相关的CRISPR系统。以Strecker等[43]开发的CAST系统为例,该系统由3个部分组成:CRISPR/Cas12k靶向系统,TnsB -Tns C -Tn i Q转座子系统,包含两侧转座子序列的DNA模板。该系统进行基因编辑时,Cas12k靶向特异DNA序列,TnsB和Tns C将模板序列切割加工,Tn i Q将加工后的模板插入靶细胞基因组DNA中,完成基因编辑。这类转座子相关的CRISPR基因编辑系统完全独立于靶细胞内源DNA损伤修复机制,理论上可大大提高基因编辑的效率、提高可插入片段的长度,适合大片段的基因插入和敲除等操作。但与此同时,转座子末端序列会整合入受体细胞基因组,这使得基因编辑不可避免地引入了额外的序列。同时该类系统目前还未应用于真核细胞。尽管如此,类似的工具被改造并适用于真核细胞后,也可成为眼科疾病基因编辑疗法的有力工具。
1、深圳湾实验室基金 (21250071)。 This work was supported by Shenzhen Bay Laboratory Foundation, China (21250071).
参考文献
1、Li H, Yang Y, Hong W, et al. Applications of genome editing technology
in the targeted therapy of human diseases: mechanisms, advances and
prospects[ J]. Signal Transduct Target Ther, 2020, 5(1): 1.
2、Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNAguided DNA endonuclease in adaptive bacterial immunity[ J]. Science,
2012, 337(6096): 816-821.
3、Balaggan KS, Ali RR. Ocular gene delivery using lentiviral vectors[ J].
Gene Ther, 2012, 19(2): 145-153.
4、张燕宇, 高欣, 江宽, 等. 眼部疾病的基因治疗与递送策略[ J]. 药
学学报, 2018, 54(4): 518-528.
ZHANG Y, GAO X, JIANG K, et al. Gene therapy and
delivery strategies for ocular disease[ J]. Acta Pharmaceutica Sinica,
2018, 54(4): 518-528.
5、Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the
iap gene, responsible for alkaline phosphatase isozyme conversion in
Escherichia coli, and identification of the gene product[ J]. J Bacteriol,
1987, 169(12): 5429-5433.
6、Hille F, Richter H, Wong SP, et al. The biology of CRISPR-Cas:
backward and forward[ J]. Cell, 2018, 172(6): 1239-1259.
7、Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation
by trans-encoded small RNA and host factor RNase III[ J]. Nature,
2011, 471(7340): 602-607.
8、Wyman C, Kanaar R. DNA double-strand break repair: all's well that
ends well[ J]. Annu Rev Genet, 2006, 40: 363-383.
9、Wang T, Wei JJ, Sabatini DM, et al. Genetic screens in human cells
using the CRISPR-Cas9 system[ J]. Science, 2014, 343(6166): 80-84.
10、Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPRCas9 knockout screening in human cells[ J]. Science, 2014, 343(6166):
84-87.
11、Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using
CRISPR/Cas systems[ J]. Science, 2013, 339(6121): 819-823.
12、Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome
engineering via Cas9[ J]. Science, 2013, 339(6121): 823-826.
13、Mani RS, Chinnaiyan AM. Triggers for genomic rearrangements:
insights into genomic, cellular and environmental influences[ J]. Nat
Rev Genet, 2010, 11(12): 819-829.
14、Yeh CD, Richardson CD, Corn JE, et al. Advances in genome editing
through control of DNA repair pathways[ J]. Nat Cell Biol, 2019,
21(12): 1468-1478.
15、Richardson CD, Kazane KR, Feng SJ, et al. CRISPR-Cas9 genome
editing in human cells occurs via the Fanconi anemia pathway[ J]. Nat
Genet, 2018, 50(8): 1132-1139.
16、Chang B, Khanna H, Hawes N, et al. In-frame deletion in a novel
centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction
with RPGR and results in early-onset retinal degeneration in the rd16
mouse[ J]. Hum Mol Genet, 2006, 15(11): 1847-1857.
17、Stone EM. Leber congenital amaurosis - a model for efficient genetic
testing of heterogeneous disorders: LXIV Edward Jackson Memorial
Lecture[ J]. Am J Ophthalmol, 2007, 144(6): 791-811.
18、den Hollander AI, Koenekoop RK, Yzer S, et al. Mutations in the
CEP290 (NPHP6) gene are a frequent cause of Leber congenital
amaurosis[ J]. Am J Hum Genet, 2006, 79(3): 556-561.
19、Collin RW, den Hollander AI, van der Velde-Visser SD, et al. Antisense
oligonucleotide (AON)-based therapy for Leber congenital amaurosis
caused by a frequent mutation in CEP290[ J]. Mol Ther Nucleic Acids,
2012, 1: e14.
20、Maeder ML, Stefanidakis M, Wilson CJ, et al. Development of a geneediting approach to restore vision loss in Leber congenital amaurosis
type 10[ J]. Nat Med, 2019, 25(2): 229-233.
22、McGee TL, Seyedahmadi BJ, Sweeney MO, et al. Novel mutations in
the long isoform of the USH2A gene in patients with Usher syndrome
type II or non-syndromic retinitis pigmentosa[ J]. J Med Genet, 2010,
47(7): 499-506.
23、Liu X, Bulgakov OV, Darrow KN, et al. Usherin is required for
maintenance of retinal photoreceptors and normal development
of cochlear hair cells[ J]. Proc Natl Acad Sci U S A, 2007, 104(11):
4413-4418.
24、Mukherjee S, Mehta A, Ciulla D, et al. In vivo proof of concept for
EDIT-102: a CRISPR/Cas9-based experimental medicine for USH2Arelated inherited retinal degeneration caused by mutations in exon
13[R]. Boston: American Society of Gene & Cell Therapy (ASGCT)
23rd Annual Meeting, 2020.
25、Koganti R, Yadavalli T, Shukla D, et al. Current and emerging therapies
for ocular herpes simplex virus type-1 infections[ J]. Microorganisms,
2019, 7(10): 429.
26、Farooq AV, Shukla D. Corneal latency and transmission of herpes
simplex virus-1[ J]. Future Virol, 2011, 6(1): 101-108.
27、Shen S, Owens CM, Chao H, et al. Treatment of herpetic keratitis with
CRISPR/Cas9 gene editing in a rabbit disease model[R]. Chicago:
American Society of Gene & Cell Therapy (ASGCT) 21st Annual
Meeting, 2018.
28、Ferrari S, Di Iorio E, Barbaro V, et al. Retinitis pigmentosa: genes and
disease mechanisms[ J]. Curr Genomics, 2011, 12(4): 238-249.
29、Diakatou M, Manes G, Bocquet B, et al. Genome editing as a treatment
for the most prevalent causative genes of autosomal dominant retinitis
pigmentosa[ J]. Int J Mol Sci, 2019, 20(10): 2542.
30、Wilson JH, Wensel TG. The nature of dominant mutations of rhodopsin
and implications for gene therapy[ J]. Mol Neurobiol, 2003, 28(2):
149-158.
31、Mendes HF, van der Spuy J, Chapple JP, et al. Mechanisms of cell death
in rhodopsin retinitis pigmentosa: implications for therapy[ J]. Trends
Mol Med, 2005, 11(4): 177-185.
32、Giannelli SG, Luoni M, Castoldi V, et al. Cas9/sgRNA selective
targeting of the P23H Rhodopsin mutant allele for treating retinitis
pigmentosa by intravitreal AAV9.PHP.B-based delivery[ J]. Hum Mol
Genet, 2018, 27(5): 761-779.
33、Kosicki M, Tomberg K, Bradley A, et al. Repair of double-strand
breaks induced by CRISPR-Cas9 leads to large deletions and complex
rearrangements[ J]. Nat Biotechnol, 2018, 36(8): 765-771.
34、Allen F, Crepaldi L, Alsinet C, et al. Predicting the mutations generated
by repair of Cas9-induced double-strand breaks[ J]. Nat Biotechnol,
2018, [Epub ahead of print].
35、Rothkamm K, Krüger I, Thompson LH, et al. Pathways of DNA
double-strand break repair during the mammalian cell cycle[ J]. Mol
Cell Biol, 2003, 23(16): 5706-5715.
36、Cox DB, Platt RJ, Zhang F, et al. Therapeutic genome editing: prospects
and challenges[ J]. Nat Med, 2015, 21(2): 121-131.
37、Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target
base in genomic DNA without double-stranded DNA cleavage[ J].
Nature, 2016, 533(7603): 420-424.
38、Nishida K, Arazoe T, Yachie N, et al. Targeted nucleotide editing
using hybrid prokaryotic and vertebrate adaptive immune systems[ J].
Science, 2016,
39、Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing
of A?T to G?C in genomic DNA without DNA cleavage[ J]. Nature,
2017, 551(7681): 464-471.
40、Kurt IC, Zhou R, Iyer S, et al. CRISPR C-to-G base editors for inducing
targeted DNA transversions in human cells[ J]. Nat Biotechnol, 2021,
39(1): 41-46.
41、Yeh WH, Chiang H, Rees HA, et al. In vivo base editing of post-mitotic
sensory cells[ J]. Nat Commun, 2018, 9(1): 2184.
42、Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome
editing without double-strand breaks or donor DNA[ J]. Nature, 2019,
576(7785): 149-157.
43、Strecker J, Ladha A, Gardner Z, et al. RNA-guided DNA insertion with
CRISPR-associated transposases[ J]. Science, 2019, 365(6448): 48-53.
44、Klompe SE, Vo PLH, Halpin-Healy TS, et al. Transposon-encoded
CRISPR-Cas systems direct RNA-guided DNA integration[ J]. Nature,
2019, 571(7764): 219-225.
45、Kajiwara K, Hahn LB, Mukai S, et al. Mutations in the human retinal
degeneration slow gene in autosomal dominant retinitis pigmentosa[ J].
Nature, 1991, 354(6353): 480-483.
46、Perrault I, Delphin N, Hanein S, et al. Spectrum of NPHP6/CEP290
mutations in Leber congenital amaurosis and delineation of the
associated phenotype[ J]. Hum Mutat, 2007, 28(4): 416.
47、Kuivenhoven JA, Weibusch H, Pritchard PH, et al. An intronic mutation
in a lariat branchpoint sequence is a direct cause of an inherited human
disorder (fish-eye disease)[ J]. J Clin Invest, 1996, 98(2): 358-364.