EYESi模拟器结合Wet-lab在白内障手术培训中的效果评价
阅读量:7633
DOI:10.12419/2311140001
发布日期:2024-03-13
作者:
潘玉珂 ,秦颖嫣 ,范舒欣 ,陈婉 ,郑丹莹 ,罗莉霞 ,谈旭华
展开更多 '%20fill='white'%20fill-opacity='0.01'/%3e%3cmask%20id='mask0_3477_29692'%20style='mask-type:luminance'%20maskUnits='userSpaceOnUse'%20x='0'%20y='0'%20width='16'%20height='16'%3e%3crect%20id='&%23232;&%23146;&%23153;&%23231;&%23137;&%23136;_2'%20x='16'%20width='16'%20height='16'%20transform='rotate(90%2016%200)'%20fill='white'/%3e%3c/mask%3e%3cg%20mask='url(%23mask0_3477_29692)'%3e%3cpath%20id='&%23232;&%23183;&%23175;&%23229;&%23190;&%23132;'%20d='M14%205L8%2011L2%205'%20stroke='%23333333'%20stroke-width='1.5'%20stroke-linecap='round'%20stroke-linejoin='round'/%3e%3c/g%3e%3c/g%3e%3c/svg%3e)
关键词
显微手术培训
EYESi虚拟手术模拟器
Wet-lab
超声乳化白内障吸除术
问卷调查
摘要
目的:比较单一EYESi虚拟手术模拟器(Dry-lab)、Wet-lab以及两种方式联合教学在超声乳化白内障吸除显微手术培训中的效果及差异,以期探索更科学高效的教学方式。方法:选取中山大学中山眼科中心接受住院医师规范化培训的1年级住院医师18名,随机分为Dry-lab组、Wet-lab组和联合组,每组各6人,分别接受8次有效Dry-lab训练、8次Wet-lab训练、4次有效Dry-lab训练联合4次Wet-lab训练。培训前后问卷调查评估三种教学方式的模拟效果与学员满意度,并在猪眼模型上考核超声乳化白内障吸除手术的三个主要步骤,以评估学员的培训效果。结果:Dry-lab与Wet-lab训练均能有效帮助学员学习使用显微器械,操作手感较好。但在立体感(P=0.007)、与人眼操作相比近似度(P<0.001)以及对掌握技术的帮助度(P=0.003)上,Wet-lab优于Dry-lab训练;而在缩短培训用时(P<0.001)上,Dry-lab培训更具优势。联合培训模式培训效果优于单一Wet-lab训练(P=0.014)和模拟器培训(P=0.012),整体满意度高于Wet-lab训练(P=0.042)和Dry-lab培训(P=0.042)。结论:Dry-lab与Wet-lab训练在超声乳化白内障吸除显微手术培训中各有优势,而两者相结合的教学模式更为高效,培训效果更佳,整体满意度高。
全文
白内障是全球首位致盲眼病,随着人口老龄化进展,50岁以上人群白内障发病率逐年上升[1]。白内障唯一有效的治疗方法是进行手术治疗,其中超声乳化白内障吸除术是主流的手术方式。该术式需要术者具备娴熟和精细的显微手术操作技术,要求双手双脚和眼耳的有效配合,以及对超声乳化设备的关键参数(能量、流量、负压等)的有效应用。然而,当前国内能熟练运用超声乳化技术进行白内障手术的眼科医生数量远远不足,无法满足日益增长的白内障患者的手术需求;且由于日益紧张的医患关系,低年资医生缺乏足够的实践机会在人眼手术中提升技能[2]。因此,探索如何科学、有效地培训眼科住院医生的白内障显微手术能力尤为重要。
传统白内障超声乳化显微手术培训主要基于临床手术观摩及Wet-lab教学。Wet-lab是一种以新鲜猪眼等动物眼为练习模型的教学方式,学员在猪眼上模拟真实手术情景,熟悉眼解剖结构,练习显微操作[3]。近年来,随着虚拟现实(virtual reality,VR)技术引入眼科教学,以EYESi为代表的虚拟手术模拟器(Dry-lab)在玻璃体视网膜手术以及白内障手术教学中取得了一定的效果[4]。与Wet-lab不同的是,Dry-lab不受猪眼材料以及教师教学条件的限制。同时,Dry-lab还能根据练习者的实际操作实时评估,使低年资住院医师能够自主练习,逐步提升操作技能。对于具备一定显微操作经验的高年资医生,Dry-lab训练可进一步提升其手术技能,减少人眼手术的并发症[5,6]。
目前对于Dry-lab与传统Wet-lab教学在超声乳化白内障吸除手术培训中的作用尚未有详尽的对比研究,二者帮助低年资住院医师初步掌握手术技能的效果孰优孰劣尚无定论。且国内对于白内障手术教学效果的评估标准主观性强,缺乏针对不同培训模式教学效果的系统、全面的评估及反馈机制[7]。本研究旨在建立针对超声乳化白内障吸除手术的系统全面的考核评估标准,在此基础上比较Dry-lab、Wet-lab以及两种方式联合在超声乳化白内障吸除显微手术培训的效果,以期探索更科学、高效的新型教学模式。
1 对象与方法
1.1 对象
选取2023年7—9月在中山大学中山眼科中心白内障科进行规范化培训的1年级住院医师(以下简称学员)。纳入标准:既往未参与过显微手术培训,无相关操作经验;排除标准:无法按时按量完成规定次数培训,无法参加培训后考核。共有18名学员符合上述标准,按照随机数字表法将其随机分为Dry-lab组、Wet-lab组和联合组,每组各6人。所有学员均自愿参与本研究,并签署书面知情同意书。
1.2 方法
1.2.1 培训方式
所有学员进行显微操作培训前均接受3个课时的超声乳化白内障手术基础理论知识学习,由白内障科带教老师(均为高年资副主任医师)为学员分步骤详细讲解超声乳化白内障手术的操作技巧和注意事项,以及超声乳化设备的流体动力学知识。之后,由经验丰富的带教老师对三组学员进行显微手术操作培训,选取超声乳化白内障手术的三个主要步骤——撕囊、劈核及核块乳化(divide and conquer,分而治之劈核方法)、皮质抽吸进行重点讲解和培训。随后学员自主练习,带教老师在学员Wet-lab训练时巡回答疑解惑。其中,Wet-lab组学员在猪眼模型上进行8次上述显微手术操作训练;Dry-lab组学员在Dry-lab(VRMagic, Mannheim,德国)上选择手术训练(surgical training)栏目的对应三个模块,分别进行8次有效训练;联合组学员先进行4次有效的Dry-lab模块训练,再进行4次猪眼模型显微手术操作训练。Dry-lab有效训练定义为完成相应步骤的完整操作,且评分≥60分。训练同时Wet-lab组及Dry-lab组学员记录每次撕囊(开始注入粘弹剂至撤出撕囊镊)、劈核及核块乳化、皮质抽吸用时,将每项操作8次练习平均用时作为该学员该操作练习用时。
本研究培训用猪眼为当天新鲜检疫合格猪眼,角膜透明,眼压适中。VR模拟训练采用Dry-lab产生真实眼手术情境,学员将手柄插入仿真眼部模型操作,电脑实时生成眼内操作的3D图像并显示在立体显微镜下。训练结束后学员可回顾操作录像,Dry-lab根据操作表现生成综合评分及评分依据。Dry-lab内置多个不同难度等级的训练模块,本次培训采用与对应猪眼模型操作难度相近的等级,分别是撕囊1级(capsulorhexis, level 1)、劈核及超声乳化5级(phaco divide and conquer, level 5)、皮质抽吸3级(irrigation and aspiration, level 3)。
1.2.2 猪眼模型操作考核
各组学员在完成理论知识培训和8次显微操作训练后统一参加考核,考核方式为在猪眼上完成撕囊、劈核及核块乳化、皮质抽吸三个步骤。由两名经验丰富的白内障科医生担任考官,分别对学员的操作情况评分。两名考官对学员分组及彼此评分均不知情,取平均分作为学员的最终成绩。Dry-lab组学员考核前先在考官指导下进行1次猪眼模拟练习以熟悉流程,其余学员直接参加考核。考官帮助学员完成切口制作、粘弹剂注入、水分离及水分层等操作,以一致的评分标准对学员的三个操作步骤评分,并评估该学员是否需要更多的练习。依据白内障手术技能评估量表[8]制定本次考核评分标准(表1),每个步骤满分为10分。
表1 猪眼模型操作考核评分标准
Table 1 Scoring criteria for operation assessment on a pig eye model
续表1
1.2.3 问卷调查
在学员接受理论知识培训后即通过微信问卷星发布问卷,收集各学员基线信息及对上述三个操作步骤掌握程度的自我评分,以0~10分计分,分数越高表示相应技术掌握越熟练,培训结束后以同样的方式发布问卷。问卷评估学员满意度、技术掌握程度,并通过表面效度(face validity)与内容效度(content validity)两方面评价模拟训练的模拟效果[9-10],其中表面效度关注与实际任务相比模拟的真实性;内容效度评估模拟的适用性,即代表掌握的知识或技能的程度。
1.3 统计学处理
采用SPSS 25.0统计软件进行统计学分析。计量资料如符合正态分布用(x±s)表示,两组间比较采用两独立样本t检验,三组间比较采用单因素方差分析,多重比较采用Bonferroni法。偏态分布计量资料用M(P25,P75)表示,三组间比较采用Kruskal-Wallis H检验,多重比较采用Bonferroni法。分类变量用频数和百分比表示,计数资料的组间比较采用Fisher确切概率法。P<0.05为差异有统计学意义。
2 结果
2.1 调查对象基线特征
三组学员性别以及其他可能影响显微操作技术的因素,如是否掌握一门乐器、是否体验过VR或增强现实技术、是否经常玩电子游戏(P=0.095),比较差异均无统计学意义(均P>0.999),具有可比性。
2.2 Dry-lab与Wet-lab模拟效果评价
2.2.1 表面效度
关于两种培训方式立体感评分,Wet-lab高于Dry-lab(P=0.007)。Dry-lab组及联合组学员对模拟器画面逼真度评分,结果为(5.33±2.23)分,表明真实感介于好与差之间。见表2。
表 2 Wet-lab与Dry-lab模拟效果及满意度比较(x±s) 单位:分
Table 2 Comparison of simulation effect and satisfaction between Wet-lab and Dry-lab(x±s) unit: points
2.2.2 内容效度
Wet-lab与人眼操作相比的相似度以及对掌握技术的帮助度均优于Dry-lab操作,差异具有统计学意义(表2)。对于学习使用显微器械(例如撕囊镊、截囊针),Wet-lab组及Dry-lab组所有学员认为其接受的猪眼或模拟器模拟练习有帮助,联合组6名(100%)学员认为二者均有帮助。
问卷收集三个操作步骤最难点以及3种培训方式对操作难点的帮助情况。就撕囊而言,排名前三位的难点分别为扰动皮质(39%)、抓撕囊瓣(22%)、控制方向(22%)。Wet-lab模拟培训对掌握这三个难点有较大帮助,分别为扰动皮质(34%(注:所有学员中,34%的学员认为Wet-lab对扰动皮质帮助最大,下同))、抓撕囊瓣(25%)、控制方向(25%),而Dry-lab培训在控制方向(75%)上效果较为突出。劈核和核块乳化方面,主要难点为脚踏控制(44%)、转核(28%)、掰核(22%),其中Wet-lab模拟培训对脚踏控制(33%)以及Dry-lab培训对转核(25%)、掰核(33%)帮助较大。皮质吸除过程最主要的难点为误吸后囊膜(39%)与注吸孔方向的控制(28%),Wet-lab和Dry-lab培训对掌握这两项难点均有帮助,Wet-lab培训在掌握注吸孔方向的控制这一难点上更胜一筹。见图 1~3。
图1 不同培训方式在撕囊中的训练效果评价
Figure 1 Effect evaluation of different training methods in capsulorhexis
(A)学员认为撕囊过程的最难点占比;(B) 学员认为Wet-lab对撕囊最有帮助的难点及人数占比;(C) 学员认为Dry-lab对撕囊最有帮助的难点及人数占比。
(A) Percentage of the most diffcult part of capsulorrhexis; (B) The most helpful aspects of Wet-lab in capsulorhexis; (C) The most helpful aspects of Dry-lab in capsulorhexis.
图2 不同培训方式在核块处理中的训练效果评价
Figure 2 Effect evaluation of different training methods innucleus processing
(A) 学员认为核块处理过程的最难点占比;(B) 学员认为Wet-lab对核块处理最有帮助的难点及人数占比;(C) 学员认为Dry-lab对核块处理最有帮助的难点及人数占比。
(A) Percentage of the most diffcult part of nucleus processing; (B) The most helpful aspects of Wet-lab in nucleus processing; (C) The most helpful aspects of Dry-lab in nucleus processing.
图3 不同培训方式在皮质吸除中的训练效果评价
Figure 3 Effect evaluation of different training methods inirrigation and aspiration (IA)
(A)学员认为皮质吸除过程的最难点占比;(B) 学员认为Wet-lab对皮质吸除最有帮助的难点及人数占比;(C) 学员认为Dry-lab对皮质吸除最有帮助的难点及人数占比。
(A) Percentage of the most diffcult part of IA; (B) The most helpful aspects of Wet-lab in IA; (C) The most helpful aspects of Dry-lab in IA.
2.3 三种培训方式培训效果评价
2.3.1 掌握程度自我评分
问卷统计各学员显微操作培训前后对三个主要操作步骤掌握程度的自我评分(表 3)。培训前各组学员对三个操作步骤自评掌握程度一致(P>0.05),培训后联合组相对Wet-lab组和Dry-lab组在三个步骤掌握程度上自评得分更高,培训前后联合组掌握程度提升最大,但比较差异均无统计学意义(P>0.05)。
表 3 三项操作掌握程度自我评分[M(P25,P75)]单位:分
Table 3 Self-assessment of mastery of three main steps unit: points
2.3.2 猪眼模型考核得分
根据上述评分标准对三组学员在三个主要步骤的操作情况评分(表4)。联合组在三个步骤上表现均较好(尤其撕囊、劈核及超声乳化),总分最高,优于Wet-lab组(P=0.014)及Dry-lab组(P=0.012)。考官评定各组学员是否还需更多的练习,联合组(2人)少于Wet-lab组(3人)和Dry-lab组(5人)。
表 4 3种培训方式考核得分比较[M(P25,P75)]单位:分
Table 4 Comparison of scores for the three training methods[M(P25,P75)]unit: points
2.4 满意度
Wet-lab培训与Dry-lab培训相比较,学员普遍认为模拟训练过程操作手感较好(表 2)。参与Dry-lab培训的12名学员均不认同Dry-lab训练可以替代Wet-lab训练;而参与Wet-lab培训的12名学员中2人(17%)比较认同Wet-lab训练可以替代Dry-lab训练。联合组5 人(83%)认同联合培训优于单一培训方式;而若只能选择一种培训方式,6人(100%)认为Wet-lab培训更推荐。
三组学员对所接受培训的整体满意度比较差异有统计学意义(P=0.020),联合培训整体满意度最高(9.17±0.75),优于单一Wet-lab培训(7.33±1.03)(P=0.042)或Dry-lab培训方式(7.33±1.51)(P=0.042)。
2.5 培训用时
Wet-lab组6名学员撕囊、劈核及核块乳化、皮质抽吸练习平均用时分别为(326.83±91.24) s、(196.00±52.39) s、(125.67±75.12) s,总用时平均(648.50±113.46) s;而Dry-lab组三项操作练习平均用时分别为(122.33±26.36) s、(178.83 ±82.05) s、(50.67±11.11)s,总用时平均(351.83±79.16) s,较Wet-lab组明显缩短(P<0.001)。
3 讨论
白内障超声乳化吸除术因具有切口小、恢复快等优点,已成为治疗白内障的主流手术方式。然而,由于该手术精度要求高、学习曲线长以及培训体系不完善等多种因素,国内当前能够进行此项手术的眼科医生数量远不足以满足需求[11-12],手术覆盖率低,与发达国家仍存在显著差距。因此,有必要通过行之有效的培训帮助新一代眼科医生掌握该项技术。目前白内障超声乳化手术培训主要有理论辅导、视频教学、Wet-lab以及Dry-lab等方式,其中前三项开展较为广泛,已被证实对于降低手术并发症、提升人眼手术能力有积极作用[13-14]。随着VR技术在医学及教育领域突飞猛进的发展[15-16],如何将其合理应用于白内障手术教学值得关注。国外有研究证实VR模拟器(如EYESi)训练可有效提高手术安全性[17-18];国内目前仅配备21台VR模拟器[19],Dry-lab尚未广泛应用于教学。同时,少有研究将Dry-lab与传统Wet-lab的培训效果进行全面比较。本文将Wet-lab培训、Dry-lab培训与联合培训比较,进一步探索联合培训模式是否能达到更好的教学效果。
笔者发现Wet-lab训练在模拟效果、学员满意度及培训效果上展现出一定优势。问卷显示Wet-lab在立体感、与人眼操作相比近似度以及对掌握技术的帮助等方面都显著优于Dry-lab,与新型VR技术相比仍具有不可替代的地位。学员普遍认为Wet-lab训练尚无法被Dry-lab训练所替代,若只能选择一种培训方式,对Wet-lab更为推荐。同时,Wet-lab培训中除猪眼外其余手术器械及超声乳化仪均与人眼手术一致,更有助于学员适应真实手术室环境[20]。Wet-lab与Dry-lab培训均能有效帮助学员学习使用显微器械,培训后各组学员对三个主要步骤掌握程度的自我评分显著提高。这可能有助于增强学员对未来进行人眼手术的信心,进一步对促进团队合作、提升手术安全性产生积极影响[21-22]。在操作手感上Wet-lab稍优于Dry-lab培训,但差异没有统计学意义。
有趣的是,即便如此, Dry-lab组在猪眼模型考核表现上(无论撕囊、劈核及超声乳化、皮质吸除还是总体评分),与Wet-lab组相比差异没有统计学意义。Hu等[23]对比了Dry-lab与Wet-lab在白内障手术劈核培训方面的作用,发现Dry-lab组猪眼劈核操作的考核成绩与Wet-lab组几乎相同(除后囊膜及切口保护方面稍差),与笔者的结果一致。此外笔者还注意到,在Dry-lab进行一次练习所需的时长少于在Wet-lab上进行相同操作的所需时间,表明Dry-lab在缩短培训周期方面更具优势。笔者推测这种差异是由于Dry-lab与Wet-lab采用不同的培训模式所导致的:Dry-lab练习是分步骤进行的,前后步骤相互独立;而猪眼实践操作是一个连续的过程,任何一步的操作失败都将对后续的手术操作产生影响(例如:初学者切口构筑欠佳会限制器械的灵活移动,水分离和水分层操作不当会给转核操作带来一定的困难),并延长相应操作的时间。由此,Dry-lab组以相对较短的练习时间取得了和Wet-lab组相媲美的成绩。
联合组在猪眼模型考核三个步骤总体表现最佳。问卷结果显示Dry-lab与Wet-lab在白内障手术不同难点培训上各有侧重,为联合组的出色表现提供了合理的解释。就撕囊而言,起瓣与方向的控制至关重要,模拟器训练中学员按照Dry-lab教学视频中的起瓣轨迹以及轨迹相对于主切口的具体方位规范练习,学习效率显著提升;而Wet-lab训练对“皮质扰动”这一主要难点帮助最大,可培养学员的组织保护意识,并能模拟真实情境(如器械的更换、术眼的突发状况等),有利于训练整体思维能力。此外,我们发现采用Dry-lab培训替代部分Wet-lab培训的联合培训模式相比于传统仅进行Wet-lab培训的方式更为经济高效。本研究中联合组整体满意度最高。经过进一步调查,笔者得知Wet-lab组学员不满意的主要原因是在进行猪眼操作自由练习时,未能得到带教老师足够时间的指导,而这也可能极大地影响培训效果[24]。鉴于当前我国眼科教学资源紧缺,通常由临床医生在繁重的工作之余承担学员的教学任务[25],学员在练习过程中往往难以获得全程一对一的指导;而对于Dry-lab练习而言,联合组学员仅在自由练习前集中接受1次由带教老师操作Dry-lab的统一演示,随后Dry-lab充当带教老师的角色,在学员独立练习中提供即时评价与反馈。同时,Dry-lab训练不受材料限制,学员可以针对自身薄弱环节反复练习相应步骤,有效节约人力、物力成本。因此,由Dry-lab过渡到Wet-lab的联合培训模式,前期利用Dry-lab为初学者提供即时指导,后期在猪眼实践练习中由带教老师进行针对性辅导,可能是应对当前教学资源不足问题的最优解。这种模式可以在确保学员掌握技能的前提下,提供更加真实、贴近实际手术环境的实践机会,有助于提升学员的实际操作能力和临床技能水能完全替代传统Wet-lab训练,未来还需在立体感、真实感等方面加以改进,以更好地模拟真实手术情境。Dry-lab结合Wet-lab的联合培训方式更高效,更有利于提升培训效果。平。
本研究的局限性:1)受限于时间及学员规模,研究样本量偏小,一定程度降低了研究的可靠性;2)采用猪眼模型操作考核的方式评估三组学员的培训效果,学员将来在真实人眼手术中表现仍需进一步研究。
综上所述,Dry-lab与Wet-lab训练在白内障显微手术培训中各自具有独特的优势。模拟器训练目前还不
利益冲突
所有作者均声明不存在利益冲突。
开放获取声明
本文适用于知识共享许可协议(Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/。
基金
暂无基金信息
参考文献
1. McCormick I, Butcher R, Evans JR, et al. Effective cataract surgical
coverage in adults aged 50 years and older: estimates from populationbased
surveys in 55 countries[ J]. Lancet Glob Health, 2022, 10(12):
e1744-e1753.
2. Jiang Y, Luo L, Congdon N, et al. Who will be wielding the lancet for
China's patients in the future?[ J]. Lancet, 2016, 388(10054): 1952-
1954.
3. 赵静, 陈荣新, 张小娟, 等. 全眼模型在Wetlab眼科手术教学中的
应用[ J]. 眼科学报, 2021, 36(10): 830-835.
Zhao J, Chen RX, Zhang XJ, et al. Application of porcine orbit model in ophthalmic surgery teaching[ J]. Yan Ke Xue Bao, 2021, 36(10): 830- 835.
Zhao J, Chen RX, Zhang XJ, et al. Application of porcine orbit model in ophthalmic surgery teaching[ J]. Yan Ke Xue Bao, 2021, 36(10): 830- 835.
4. Jaud C, Salleron J, Cisse C, et al. EyeSi Surgical Simulator: validation of
a prociency-based test for assessment of vitreoretinal surgical skills[ J].
Acta Ophthalmol, 2021, 99(4): 390-396.
5. 张健, 董莹, 蒋惠中, 等. 医学模拟教学联合PBL等教学方法在白内障手术培训中的应用[ J]. 医学研究杂志, 2022, 51(1): 153-156.
Zhang J, Dong Y, Jiang HZ, et al. Application of medical simulation teaching combined with PBL in cataract surgery training[ J]. J Med Res, 2022, 51(1): 153-156+162.
Zhang J, Dong Y, Jiang HZ, et al. Application of medical simulation teaching combined with PBL in cataract surgery training[ J]. J Med Res, 2022, 51(1): 153-156+162.
6. Adnane I, Chahbi M, Elbelhadji M. Virtual simulation for learning
cataract surgery[ J]. J Fr Ophtalmol, 2020, 43(4): 334-340.
7. 江晓丹, 李学民, 陆遥. 国内外眼科显微手术培训体系的现状分析与分层分级综合培训体系的探索[ J]. 中华医学教育探索杂志, 2021, 20(10): 1191-1194.
Jiang XD, Li XM, Lu Y. Analysis of current ophthalmic microsurgery training system and exploration of hierarchical comprehensive training system[J]. Chin J Med Educ Res, 2021, 20(10): 1191-1194.
Jiang XD, Li XM, Lu Y. Analysis of current ophthalmic microsurgery training system and exploration of hierarchical comprehensive training system[J]. Chin J Med Educ Res, 2021, 20(10): 1191-1194.
8. Thomsen ASS, Bach-Holm D, Kjærbo H, et al. Operating room
performance improves after proficiency-based virtual reality cataract
surgery training[ J]. Ophthalmology, 2017, 124(4): 524-531.
9. Teles de Campos S, Boskoski I, Voiosu T, et al. Face and content validity
of a biological papilla designed for the Boškoski-Costamagna ERCP
simulator[ J]. Gastrointest Endosc, 2023, 98(5): 822-829.e1.
10. Nair AG, Ahiwalay C, Bacchav AE, et al. Assessment of a high-delity,
virtual reality-based, manual small-incision cataract surgery simulator: a
face and content validity study[ J]. Indian J Ophthalmol, 2022, 70(11):
4010-4015.
11. Zhang S, Chen J, Yang F, et al. Prevalence rates of cataract and cataract
surgery in elderly Chinese people living in suburban Shanghai:
thePujiang Cataract Cohort Study[ J]. Br J Ophthalmol, 2023, 107(5):
683-689.
12. Resnikoff S, Lansingh VC, Washburn L, et al. Estimated number of
ophthalmologists worldwide (International Council of Ophthalmology
update): will we meet the needs?[ J]. Br J Ophthalmol, 2020, 104(4):
588-592.
13. Jeang LJ, Liechty JJ, Powell A, et al. Rate of posterior capsule rupture
in phacoemulsication cataract surgery by residents with institution of
a wet laboratory course[ J]. J AcadOphthalmol (2017), 2022, 14(1):
e70-e73
14. Geary A, Wen Q, Adrianzén R, et al. The impact of distance cataract
surgical wet laboratory training on cataract surgical competency of
ophthalmology residents[ J]. BMC Med Educ, 2021, 21(1): 219.
15. Jiang H, Vimalesvaran S, Wang JK, et al. Virtual reality in medical
students' education: scoping review[J]. JMIR Med Educ, 2022, 8(1):
e34860.
16. da Cruz Torquato M, Menezes JM, Belchior G, et al. Virtual reality
as a complementary learning tool in anatomy education for medical
students[ J]. Med Sci Educ, 2023, 33(2): 507-516.
17. Ferris JD, Donachie PH, Johnston RL, et al. Royal College of
Ophthalmologists' National Ophthalmology Database study of cataract
surgery: report 6. The impact of EyeSi virtual reality training on
complications rates of cataract surgery performed by rst and second
year trainees[ J]. Br J Ophthalmol, 2020, 104(3): 324-329.
18. Dean WH, Gichuhi S, Buchan JC, et al. Intense simulation-based surgical education for manual small-incision cataract surgery:
the ophthalmic learning and improvement initiative in cataract
surgery randomized clinical trial in Kenya, Tanzania, Uganda, and
Zimbabwe[ J]. JAMA Ophthalmol, 2021, 139(1): 9-15.
19. Zhang Z, Li S, Sun L, et al. Skills assessment after a grape-based
microsurgical course for ophthalmology residents: randomised
controlled trial[ J]. Br J Ophthalmol, 2023, 107(9): 1395-1402.
20. Daly MK, Gonzalez E, Siracuse-Lee D, et al. Efficacy of surgical
simulator training versus traditional wet-lab training on operating room
performance of ophthalmology residents during the capsulorhexis in
cataract surgery[ J]. J Cataract Refract Surg, 2013, 39(11): 1734-1741.
21. Ní Dhubhghaill S, Sanogo M, Lefebvre F, et al. Cataract surgical
training in Europe: European Board of Ophthalmology survey[ J]. J
Cataract Refract Surg, 2023, 49(11): 1120-1127.
22. Hind J, Mulholland C, Cox A, et al. Simulated cataract surgery training
of the non-dominant hand improves condence and competence[ J].Eye, 2022, 36: 2211-2212.
23. Hu YG, Liu QP, Gao N, et al. Efficacy of wet-lab training versus surgicalsimulator
training on performance of ophthalmology residents during
chopping in cataract surgery[ J]. Int J Ophthalmol, 2021, 14(3): 366-
370.
24. Nguyen G, Palmer J, Ludeman E, et al. Evaluating the efficacy of
microsurgical training methods in ophthalmology education: a
systematic review and meta-analysis[ J]. J AcadOphthalmol (2017),
2021, 13(2): e216-e227.
25. 郑克, 余晓波, 罗怡, 等. 培训眼科住院医师显微手术技能的探索[ J]. 中国继续医学教育, 2020, 12(13): 64-67.
Zheng K, Yu XB, Luo Y, et al. Exploration of microsurgery skill training for ophthalmologic resident[ J]. China Continuing Med Educ, 2020, 12(13): 64-67.
Zheng K, Yu XB, Luo Y, et al. Exploration of microsurgery skill training for ophthalmologic resident[ J]. China Continuing Med Educ, 2020, 12(13): 64-67.