返回

角膜屈光手术对角膜生物力学影响的研究进展

阅读量:6030
DOI: 10.12419/24062403
发布日期:2024-05-28
作者:
包刀知漫 ,燕振国 ,王钰焕 ,江媛媛 ,丁建
展开更多

关键词

角膜屈光手术
角膜生物力学
眼反应分析仪
可视化角膜生物力学分析仪

摘要

角膜屈光手术是目前屈光手术的主流术式,随着全飞秒、全激光手术方式的发展,手术变得更加安全精准,不仅角膜创伤小,术后恢复时间也进一步缩短。角膜具有屈光特性和典型的生物软组织力学特性,角膜力学特性不仅参与维持角膜形态,影响角膜手术尤其屈光手术的效果及预后,而且还与部分角膜疾病的发生和发展密切相关。近年来生物力学研究发展迅速,其在眼部疾病的诊疗中发挥着越来越重要的作用。角膜生物力学的变化与术前角膜的形态、不同手术方式的选择、术后角膜厚度的改变等多种因素相关,但手术导致的角膜自身形态改变是不可逆的,若术后角膜生物力学的变化较大,可能会引起医源性角膜扩张、继发性圆锥角膜等并发症的发生。为了规避术后角膜扩张风险和指导个性化的术式选择,了解角膜生物力学特性的影响至关重要。文章对角膜的基础结构、角膜生物力学特性、生物力学测量方法和不同术式及不同角膜瓣厚度术后生物力学变化的研究进展进行综述,为近视患者的个性化精准治疗提供理论指导。

全文

文章亮点

1. 关键发现

本研究发现角膜屈光手术均会造成角膜生物力学降低,前 3 个月角膜生物力学下降幅度最大,且 LASIK 与最大的角膜生物力学降低相关,6 个月后角膜生物力学趋于稳定。在高度近视矫正方面,SMILE 在生物力学更有优势。

2. 已知与发现

屈光术后角膜生物力学变化是目前研究的热点,测量方法中 ORA 和 Corvis ST 已经在临床上已经有了较广泛的应用,但其仅提供整体的角膜参数,不能对角膜局部生物力学特性进行测量,而新兴技术,如布里渊显微镜、光学相干弹性成像等有望填补这部分缺失,但需要大量的临床研究证实。

3. 意义与改变

通过本次研究,临床医生可了解不同术式和不同角膜瓣厚度术后生物力学变化,有助于准确地评估屈光手术风险进而定制个性化手术方式,以规避术后角膜扩张风险。

       角膜屈光手术是一类矫正近视、远视、散光等屈光不正的手术,如飞秒激光辅助的准分子激光原位角膜磨镶术(femtosecond laser-assisted in situ keratomileusis, FS-LASIK)和飞秒激光小切口微透镜取出术(small incision lenticule extraction, SMILE),角膜屈光手术对低、中、高度近视的矫正疗效显著,不仅可以使患者完全脱离眼镜或隐形眼镜从而提高生活质量,更重要的是其具有良好的安全性、稳定性和可预见性[1] 。角膜生物力学变化是近视眼生物力学研究的重点,其对于眼病的治疗、手术反应的预测、扩张疾病的稳定和进展都具有良好的表征作用。医源性角膜扩张是角膜屈光术后最严重的并发症[2] ,已经受到临床医生及研究者们的广泛关注,为了降低术后角膜扩张的风险,了解角膜的生物力学特性对于筛选屈光手术适应证至关重要,不仅有助于规避术后角膜扩张风险,更有助于准确地评估屈光手术风险进而定制个性化手术方式。本文对近年来角膜生物力学研究的方法和角膜屈光不同术式术后角膜生物力学特性变化进行综述,为近视患者的个性化精准治疗提供理论指导。

1 角膜结构基础

       角膜作为一种动态反应性组织,覆盖了眼睛表面的前1/6,屈光力约占眼球的2/3,其不断与机械力相互作用,以保持结构完整性、屏障功能、透明度和屈光力。由于胶原纤维的排列和密度不同,每一层角膜对整体生物力学的贡献程度不同。角膜上皮排列在角膜的外表面,厚约35 μ m,只有很少的直接生物力学作用[3] 。前弹力层厚约12 μ m,是相对均一、无细胞的胶原纤维层,与维持角膜生物力学的稳定性有关,其受损可能会导致角膜扩张性疾病[4] ,但有研究认为其生物力学作用不明确[5] 。基质层厚约500 μ m,由胶原纤维、角膜基质细胞和蛋白聚糖构成,胶原纤维的排列高度规则,胶原薄片的层间交织良好,承载了最主要的生物力学特性,前部基质较后部基质承担更多的力学作用,而中央部力学性能比周边部基质较弱[6] 。有研究显示,角膜硬度和角膜基质胶原纤维间的交联随年龄增长而增加[7] ,这导致了角膜生物力学的动态变化和一些个体的角膜疾病的发生和进展。后弹力层为一层无细胞结构的膜,厚约10~12 μ m,富有弹性,其延展性和低硬度可缓冲一定范围内眼压对角膜形态的影响。内皮细胞是一层蜂窝状覆盖在角膜后表面的单层细胞,厚约5 μ m,它通过钠钾ATP酶泵的活性积极维持渗透梯度和角膜的最佳水合作用间接发挥生物力学作用[8] 。然而,细胞密度随着年龄的增长而降低,年降低率为0.6%[9] 。因此,足够的细胞密度对于维持透明角膜至关重要,一旦细胞密度低于500个/mm2 ,可发生角膜内皮功能失代偿,引起角膜水肿和混浊,最终导致严重的视力障碍[9]

2 角膜生物力学特性

       目前,对眼组织生物力学的研究越来越受到重视,其可以提供从器官到细胞水平的生物过程所涉及的机械力信息[10-11] ,在高度近视[12] 、青光眼[13] 和糖尿病眼病[14] 等眼科相关疾病方面已经有大量的研究。角膜是一种生物软组织材料,具有抵抗变形和抵抗破坏的能力,对眼球屈光起决定因素,其主要有黏弹性、非线性和各向异性等生物力学特性,决定这些特性的主要有蛋白多糖和糖胺聚糖与胶原纤维的附着、胶原结构的排列、角膜肿胀压力和细胞外基质组分的产生或降解。弹性指的是组织的静态特性,它来自胶原微观结构的拉伸特性,是指角膜在外力作用下产生变形,撤去外力后能够恢复原来的大小和形状的能力,具有非时间依赖性。弹性模量指材料抵抗弹性变形的能力,计算方法是应力-应变曲线的斜率,反映材料的硬度。黏性指的是动态特性,它来自细胞及细胞外基质分子的非共价重排,指具有时间依赖性的受剪切或拉伸应力时抵抗变形的能力,角膜不仅有瞬时弹性响应,而且具有时间相关的机械响应与能量损耗。非线性指应力-应变曲线的斜率在不同阶段存在差异,其弹性模量是一个变数,并非简单的线性关系。角膜由于胶原纤维排列和分布方向不同而导致角膜力学性能不同的特性称为各向异性[15] ,如角膜中央部的弹性模量在水平和垂直两个方向上数值较高,而在角膜周边部以沿角膜缘切线方向的弹性模量数值较高。

3 生物力学测量方法

3.1 离体测量

       3.1.1 拉伸实验
       拉伸试验(tensile test)是测量生物软材料力学性能的传统方法之一。其具有简单易行和可灵活调整加载模式的优点,其原理是在一定的温度和湿度下,以一定加载速度施加拉伸载荷,记录受试物体变形,获得应力-应变曲线,并可计算弹性模量、抗拉强度、断裂能等生物力学参数。局限性在于改变了角膜固有的弯曲度、受力方式和生理环境等。
       3.1.2 膨胀试验
       膨胀试验(inflation test)的优势是维持角膜的完整性和自然状态,在更接近生理状态的受力情况下进行,分为角膜膨胀试验和全眼膨胀试验。前者是将角膜固定在人工前房装置上,向装置内注入液体;后者是通过视神经向离体的完整眼球内注入液体,模拟眼压升高,记录并分析眼压与角膜顶点位移的关系。局限性在于压力的控制难度较大,设备制作较为复杂,技术要求高,且难以消除巩膜对试验结果的影响。

3.2 在体测量

       3.2.1 眼反应分析仪
       眼反应分析仪(ocular response analyzer, ORA) 是一种具有非接触、准确度高且避免交叉感染等优点的新型非接触式喷气式眼压计,在2005年首次被用于测量活体角膜生物力学[16] 。ORA采用高速程控喷气系统和红外线发射探测系统量化分析角膜表面IR反射强度变化过程,角膜在压陷和恢复过程中,存在滞后现象,两次压平的气压差值(p1−p2)是一个稳定的参数,即角膜滞后值(corneal hysteresis, CH),其反映了角膜组织吸收和损耗能量的能力,是黏弹性的综合指标。角膜阻力因子(corneal resistance factor, CRF)是考虑到中央角膜厚度的角膜弹性组织的测量方法,是一个静态的、与时间无关的角膜对施加力的反应指标。CRF反映了角膜组织对施加的外力的抵抗力(刚度和强度)。此外,ORA还提供了两个眼压(intraocular pressure, IOP)参数[17] : 两次压平眼压值的平均值即模拟Goldmann眼压值(IOPg),与Goldmann眼压有良好的重复性,对模拟眼压进行矫正,得到角膜生物力学校正眼压(IOPcc),IOPcc是与临床中多种疾病特征表现出相关性最高的眼压参数。ORA存在一定的局限性[18] ,如测量结果不直接提供关于角膜的生物力学相关标准指标,不能反映角膜具体位置以及严重程度的信息,而且预测圆锥角膜早期区域属性变化时的灵敏度和特异度较低,也不能反映与交联相关的生物力学变化[19] 。针对这些局限性,一些研究通过定义基于ORA压力或红外序列数据的新度量方法来应对[20]
       3.2.2 可视化角膜生物力学分析仪
       可视化角膜生物力学分析仪(corneal visualization scheimpflug technology, Corvis ST)使用超高速成像和特殊分析方法进行整体角膜生物力学评估,该设备在测量时产生一致的空气喷射压力[21] ,拍摄帧数达到4 300 幅/秒,在33 ms内拍摄140幅8 mm的水平切面图,不仅提供了与体外测试的真实IOP相媲美[22] 的生物力学补偿IOP (bIOP),还可以计算各种动态角膜反应(dynamic corneal response, DCR)参数。早期参数比较单一,如变形幅度(DA),并没有显示出比ORA更好的圆锥角膜诊断能力,后来角膜生物力学指数(corneal biomechanical index, CBI)和断层生物力学指数(tomographic and biomechanical index, TBI)等联合指标的发展提高了Corvis ST数据早期和准确诊断角膜扩张的有效性[23] 。近年来,利用Corvis ST数据开发了应力-应变指数(Stress-Strain Index, SSI)算法以生成材料刚度参数,SSI基于有限元建模,为给定的角膜建立了应力-应变曲线,并生成一种可在很大程度上排除IOP和角膜厚度干扰特性的指标。此外,还引入了一种有前景的新型复合指标——Dresden生物力学青光眼因子(dersden biomechanical glaucoma factor, DBGF),该指标将bIOP和角膜厚度测量数据与几种角膜生物力学参数指标相结合,提高了正常压力性青光眼的早期检测能力[24] 。Corvis ST相较于ORA测量可视化程度更高,参数更加丰富,但同样面临着与ORA类似的缺点,如由于喷气在角膜中央区域,在识别远离中央区域的角膜生物力学差异方面的敏感性较差。
       3.2.3 布里渊显微镜
       布里渊显微镜(brillouin microscopy)是一种非侵入性测量方法,能获取角膜局部不同深度的力学特性,其原理是由光和声波之间的非线性相互作用引起的,通过探测激光束从局部组织散射时的光谱位移与组织纵向弹性模量之间的关系,获得组织纵向弹性模量的空间分布,从而得到材料的力学性能信息。从力学角度看,软组织中的剪切和纵向弹性模量是两个相互独立的弹性性质,但体外模型证明了从布里渊显微镜获得的纵向模量与角膜组织的杨氏模数相关。Scarcelli等[25] 介绍了第一种能够测量内眼和晶状体横截面的扫描系统,与此同时,布里渊显微镜也被用于活体人眼的测量[26] ,量化交联的加强效果[27] 并识别圆锥角膜的弱化区[28] 。尽管布里渊显微镜因采集时间长和受角膜水化程度影响,在临床上尚未广泛使用,但其具有高空间分辨率、非侵入性和无需外加负载等优点,在临床应用中具有巨大潜力。
       3.2.4 光学相干弹性成像
       光学相干弹性成像(optical coherence elastography, OCE)是一种基于相干光断层成像技术发展而来的结合影像学方法定量获取组织生物力学性能的技术,具有极高空间分辨率,且对组织机械变形具有高度敏感性,其原理是通过探测眼球各组织在载荷激励下的力学响应,定量分析组织的生物力学指标,进而绘制出弹性二维或三维图像。OCE具有非侵入性在体测量、高分辨率(可达微米级)、实时快速和三维成像能力等多种优势,是近年发展起来的实现结构图像和弹性图像相融合的新兴技术,不仅可以同时获取眼组织的结构和力学属性信息,而且可以实现生物组织的高精度弹性定量检测。
       近期有研究提出新的OCE系统,其采用空气耦合超声换能器作为激励,优点是可以在空气介质中完成角膜组织的弹性成像检测,不需要其他耦合介质,使OCE技术的操作更加简便[29] 。OCE可以生成个体化的角膜力学特征图像,对于指导屈光手术设计以及提高术后视力的可预测性、长期稳定性及视觉质量具有重要的价值。但是,目前有关人眼角膜在体测量的研究很少,尚需要更完善的角膜模型和更优化的数据处理方式,以便获取更为精准的参数。
       3.2.5 有限元模拟
       有限元分析软件具有强大的模拟功能,可以建立各种复杂结构,能直观地显示结构内部的应力和应变集中情况,计算机模拟数据和临床研究结果的结合为早期眼部异常的预测和治疗提供了一种可能的解决方案,该方法可有效避免动物实验和医学伦理学问题。通过构建人眼三维全眼模型,利用有限元分析法模拟角膜屈光手术切口的尺寸、方向和入射角,探索术后角膜的波前像差、应力和应变的变化规律,为制定SMILE手术方案和提高手术安全性提供理论依据。Zhou等[30] 提出了一种新的全眼生物力学材料模型,并模拟了IOP升高对眼结构的影响。利用ANSYS软件建立精细的全眼模型,研究眼压与生物力学响应的关系。Karimi等[31] 结合临床数据、有限元分析和人工神经网络对健康角膜和圆锥角膜的生物力学进行研究,建立一种新的基于生物力学的圆锥角膜眼部诊断方法。基于计算机建模的眼球生物力学研究是目前的主流,但简化模型和理想条件可能会导致与真实情况不同的结论。

4 不同术式角膜生物力学变化对比

4.1 表层手术与板层手术对角膜生物力学的影响对比

       Xin等[32] 基于Corvis ST评估了tPRK、FS-LASIK和 SMILE术后6月内角膜生物力学变化,其中FS-LASIK组角膜瓣直径为8.5~9.0 mm,切削厚度为95~110 μ m,SMILE组帽的厚度为115~140 µ m,结果显示术后SP-A1明显降低,IIR、DA 和 DA ratio 2.0 mm 增加,研究组校正角膜厚度损失(central corneal thickness difference, CCTDif)或组织改变百分比(percent tissue altered, PTA)后,3个手术组的角膜刚度均降低。在相似的角膜厚度损失的情况下,FS-LASIK的角膜硬度降低幅度最大,其次是SMILE,tPRK的角膜硬度降低幅度最小。也有研究者发现,tPRK和SMILE术后角膜生物力学均减弱,术后早期tPRK眼反应分析仪红外波形力学参数优于SMILE[33] ,这与上述研究结果一致。研究发现,高度近视患者在手术中引起的生物力学变化通常大于中低度近视患者。这是因为高度近视矫正需要切除更多的组织,从而导致角膜生物力学更大幅度地降低。另有研究者认为,高度近视患者的角膜硬度高于中低度和超高度近视患者,IOP、CCT都会影响角膜生物力学[34] 。因此,研究者需要进行更全面的前瞻性研究来评估生物力学变化。
       Hwang等[35] 评估了PRK不加丝裂霉素C(mitomycin C, MMC)、PRK加MMC和LASIK对CH和CRF的影响。LASIK组角膜瓣的厚度为110 µ m,直径为8.8 mm。术后3个月,3组患者的CRF显著降低且PRK-MMC的眼在随访的前3个月CRF和CH下降幅度最大,而术后第3-12个月PRK-MMC组患者的角膜生物力学强度明显增加。在所有被研究的角膜屈光手术中,角膜生物力学显著下降,但术后角膜生物力学减弱无组间差异。这两种手术可能表明,LASIK和PRK在没有MMC的情况下对角膜生物力学特性有类似的长期影响。但此研究接受 PRK-MMC 的患者相对较少,且就诊时只进行一次测量,这可能导致更大的变异性,因此还需要更大样本量的前瞻性研究来进一步证实。Hashemi等[36] 基于Corvis ST前瞻性研究了60例高度近视患者PRK-MMC或FS-LASIK术后角膜生物力学变化,FS-LASIK组角膜瓣直径为9.5 mm,切削厚度为110 μ m,FS-LASIK组中A2T、A2V和DA均增加,IOP、bIOP、A2L、A1V和HCR均降低(P <0.05),A1L、最高峰值时间和PD参数接近。PRK-MMC组中, A2T、A2V和PD升高,A1V、A1T、和IR均降低(< 0.05)。而术后6个月测量的A1L、A2L、HCT和DA均无显著变化。结果表明术后Corvis ST测量的角膜生物力学有显著变化,在随访6个月时,FS-LASIK组的生物力学变化更为明显。但是本研究样本量较少,且随访时间较短和时间节点偏少,仍需要进一步的随机研究来更好地表征与每种手术相关的生物力学变化模式。
       Yu等[37] 基于ORA前瞻性研究了64例接受LASIK或SMILE手术的患者,两组患者术后CH、CRF均明显低于术前,但SMILE组术后3个月至3年观察时间CH和CRF比较稳定。术后3个月,SMILE组CH高于LASIK组,然而术后3年LASIK组的CH参数增加。根据长期随访结果,SMILE和LASIK对角膜生物力学强度的影响相似。SMILE是理论上对角膜硬度影响最小的手术[38] 。Seven等[39] 在数学建模中观察到,与LASIK/FS-LASIK手术相比,SMILE对前基质胶原力学的影响较小,这可能是SMILE组生物力学比较稳定的原因之一。SMILE在角膜伤口愈合开始时对角膜的生物力学变化较小,这可能是由于角膜完整性的保持和前基质变硬,但生物力学变化和伤口愈合的相关机制还需要进一步研究探讨。

4.2 板层手术对角膜生物力学的影响

       Vanathi等[40] 前瞻性研究了80例接受FS-LASIK手术的患者,切削厚度为120 μ m。在术后第1天和第1、3、6月通过ORA检测角膜生物力学参数CH、CRF及其与组织改变百分比(percent tissue altered, PTA)的相关性。研究表明在术后每个随访点CH和CRF均有所下降,CH和CRF与PTA呈负相关,结果表明FS-LASIK术后角膜生物力学参数降低,并且在PTA较高的眼中,CH和CRF降低更明显。
       Elmohamady等[41] 研究了103例接受LASIK或FS-LASIK或SMILE手术的患者,LASIK组角膜瓣的厚度为100 µ m,FS-LASIK组切削厚度为100 μm,SMILE组微透镜由VisuMax飞秒激光制作。研究结果显示,所有研究组的CH和CRF参数术后均比术前降低。在SMILE组中,CH和CRF在任何随访点均高于LASIK和FS-LASIK组(≤0.05),这与He等[42] 得出的结论相似。也有研究表明LASIK手术在术后早期不可逆地减弱了角膜的生物力学特性,然而生物力学参数在术后6个月稳定,未见进一步下降[43] 。但Guo等[44] 的meta分析所纳入的大多数研究中,使用Corvis ST测量的术后生物力学参数在SMILE和FS-LASIK眼之间没有差异,李文静等[45] 也认为这两种手术方式对生物力学的影响无明显差异,且在术后1月时生物力学趋于稳定。这些趋势表明,与具有相同厚度的FS-LASIK瓣相比,SMILE帽更有助于保持术后角膜硬度,LASIK手术中有效分离组织瓣意味着完全丧失这部分角膜,而且随着组织的切除,LASIK手术比传统手术损失更多组织。

4.3 角膜帽厚度对角膜生物力学的影响

      Wu等[46] 用Corvis ST评估了110 µ m或140 µ m角膜帽厚度对SMILE术后角膜生物力学参数的影响。角膜帽直径为7.6 mm,使用6.5 mm光学区和0.1 mm过渡区,侧切口为2 mm。术后6个月, SMILE术后角膜生物力学参数均有明显变化,较薄角膜帽组的AT2、DA、DA的变化小于较厚角膜帽组。结果表明使用较厚的角膜帽导致角膜前曲率的变化较小。Jun等[47] 比较了120 μ m和140 μ m角膜帽厚度的SMILE术后角膜生物力学变化,侧切口设置为2.00 mm,术后生物力学结果显示,DA和IIR升高,SP-A1、ARTh和SSI参数降低。结果表明术后角膜刚度和抗变形能力显著降低,120 μ m角膜帽组的角膜生物力学强度大于140 μ m角膜帽组。Damgaar等[48] 用2.55 mm切口制作7.3 mm直径的帽,对比厚度分别为 110、160 μ m的角膜帽时发现,110 μ m的帽厚度在术后引起更严重的生物力学减弱,但组间未见明显差异。也有学者认为较厚的角膜帽厚度可能具有更好的术后角膜生物力学性能[49] 。Wu等[50] 研究了SMILE术中取 110 μ m和 130 μ m 角膜帽的两组角膜生物力学,微透镜和帽直径分别为6.5 mm和7.5 mm,侧切口为2 mm。组间比较差异无统计学意义,推测角膜生物力学的变化与角膜帽绝对厚度有关系,当绝对厚度≤30 μ m时,差异尚不足以引起术后生物力学的明显变化。在高度近视患者中,角膜帽厚度的增加导致透镜体形成越深,后残留基质床(residual stromal bed, RSB)越薄,严重厚度损失将导致显著的几何刚度损失和角膜总体刚度的显著降低,最终会减弱角膜生物力学。上述研究对比发现,SMILE角膜帽厚度对角膜生物力学的影响存在争议,还需更多的研究来证实。

5 结论

       近视的患病率逐年上升,且呈现患者低龄化的趋势,角膜屈光手术因其良好的安全性、可预见性及有效性成为世界范围内近视治疗的主要方法之一,而术后角膜生物力学变化是目前研究的热点。角膜主要有黏弹性、非线性和各向异性等生物力学特性,通过眼反应分析仪和可视化角膜生物力学分析仪来进行评估。近年来,医学界也发展出几种用于获取组织生物力学性能的新兴技术,如布里渊显微镜、光学相干弹性成像等。角膜屈光术后角膜生物力学显著降低,大多数学者认为,前3个月角膜生物力学降幅度最大,LASIK与最大的角膜生物力学降低相关,6个月后角膜生物力学趋于稳定。绝大多数研究中,SMILE术后生物力学结果优于LASIK或FS-LASIK。表层手术与SMILE术后生物力学改变争议较大。SMILE角膜帽厚度对角膜生物力学的影响结果不尽一致,需要进一步的长期前瞻性研究来证实。整体来看,SMILE在生物力学上更有优势,特别是在高度近视矫正方面。

利益冲突

所有作者均声明不存在利益冲突。

开放获取声明

本文适用于知识共享许可协议 ( Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/。

基金

暂无基金信息

参考文献

1、Gulmez M, Tekce A, Kamıs U. Comparison of refractive outcomes and high-order aberrations after small incision lenticule extraction and wavefront-guided femtosecond-assisted laser in situ keratomileusis for correcting high myopia and myopic astigmatism[ J]. Int Ophthalmol, 2020, 40(12): 3481-3489. DOI: 10.1007/s10792-020-01534-x.
2、Alvani A, Hashemi H, Pakravan M, et al. Corneal ectasia following photorefractive keratectomy: a confocal microscopic case report and literature review[ J]. Arq Bras Oftalmol, 2023, 87(6): e20210296. DOI: 10.5935/0004-2749.2021-0296.
3、Elsheikh A, Alhasso D, Rama P. Assessment of the epithelium's contribution to corneal biomechanics[ J]. Exp Eye Res, 2008, 86(2): 445-451. DOI: 10.1016/j.exer.2007.12.002.
4、Dawson DG, Grossniklaus HE, McCarey BE, et al. Biomechanical and wound healing characteristics of corneas after excimer laser keratorefractive surgery: is there a difference between advanced surface ablation and sub-Bowman's keratomileusis?[ J]. J Refract Surg, 2008, 24(1): S90-S96. DOI: 10.3928/1081597X-20080101-16.
5、Torres-Netto EA, Hafezi F, Spiru B, et al. Contribution of Bowman layer to corneal biomechanics[ J]. J Cataract Refract Surg, 2021, 47(7): 927-932. DOI: 10.1097/j.jcrs.0000000000000543.
6、Ruberti JW, Sinha Roy A, Roberts CJ. Corneal biomechanics and biomaterials[ J]. Annu Rev Biomed Eng, 2011, 13: 269-295. DOI: 10.1146/annurev-bioeng-070909-105243.
7、Komninou MA, Seiler TG, Enzmann V. Corneal biomechanics and diagnostics: a review[ J]. Int Ophthalmol, 2024, 44(1): 132. DOI: 10.1007/s10792-024-03057-1.
8、Klyce SD. 12. Endothelial pump and barrier function[ J]. Exp Eye Res, 2020, 198: 108068. DOI: 10.1016/j.exer.2020.108068.
9、Posarelli M, Romano D, Tucci D, et al. Ocular-surface regeneration therapies for eye disorders: the state of the art[ J]. BioTech (Basel), 2023, 12(2): 48. DOI: 10.3390/biotech12020048.
10、Khong EWC, Chan HHL, Watson SL, et al. Pregnancy and the eye[ J]. Curr Opin Ophthalmol, 2021, 32(6): 527-535. DOI: 10.1097/ ICU.0000000000000778.
11、Komáromy AM, Koehl KL, Park SA. Looking into the future: gene and cell therapies for glaucoma[ J]. Vet Ophthalmol, 2021,24(Suppl 1): 16- 33. DOI: 10.1111/vop.12858.
12、Liu MX, Zhu KY, Li DL, et al. Corneal biomechanical characteristics in myopes and emmetropes measured by corvis ST: ametaanalysis[ J]. Am J Ophthalmol, 2024, 264: 154-161. DOI: 10.1016/ j.ajo.2024.03.024.
13、Elhusseiny AM, Scarcelli G, Saeedi OJ. Corneal biomechanical measures for glaucoma: aclinical approach[ J]. Bioengineering, 2023, 10(10): 1108. DOI: 10.3390/bioengineering10101108.
14、Han F, Li M, Wei P, et al. Effect of biomechanical properties on myopia: a study of new corneal biomechanical parameters[ J]. BMC Ophthalmol, 2020, 20(1): 459. DOI: 10.1186/s12886-020-01729-x.
15、Abahussin M, Hayes S, Knox Cartwright NE, et al. 3D collagen orientation study of the human cornea using X-ray diffraction and femtosecond laser technology[ J]. Invest Ophthalmol Vis Sci, 2009, 50(11): 5159-5164. DOI: 10.1167/iovs.09-3669.
16、Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer[ J]. J Cataract Refract Surg, 2005, 31(1): 156-162. DOI: 10.1016/j.jcrs.2004.10.044.
17、Damgaard IB, Reffat M, Hjortdal J. Review of corneal biomechanical properties following LASIK and SMILE for myopia and myopic astigmatism[ J]. Open Ophthalmol J, 2018, 12: 164-174. DOI: 10.2174/1874364101812010164.
18、Lan G, Twa MD, Song C, et al. In vivo corneal elastography: a topical review of challenges and opportunities[ J]. Comput Struct Biotechnol J, 2023, 21: 2664-2687. DOI: 10.1016/j.csbj.2023.04.009.
19、Luz A, Faria-Correia F, Salomão MQ, etal. Corneal biomechanics: where are we?[ J]. J Curr Ophthalmol, 2016, 28(3): 97-98. DOI: 10.1016/j.joco.2016.07.004.
20、Hallahan KM, Roy AS, Ambrosio R Jr, et al. Discriminant value of custom ocular response analyzer waveform derivatives in keratoconus[ J]. Ophthalmology, 2014, 121(2): 459-468. DOI: 10.1016/j.ophtha.2013.09.013.
21、Roberts CJ. Concepts and misconceptions in corneal biomechanics[ J]. J Cataract Refract Surg, 2014, 40(6): 862-869. DOI: 10.1016/ j.jcrs.2014.04.019.
22、Lu NJ, Hafezi F, Rozema JJ, et al. Repeatability of a Scheimpflug tonometer to measure biomechanical parameters before and after myopic refractive surgery[ J]. J Cataract Refract Surg, 2022, 48(9): 1057-1062. DOI: 10.1097/j.jcrs.0000000000000909.
23、Vinciguerra R , Ambrósio R Jr, Elsheikh A , et al. Detection of keratoconus with a new biomechanical index[ J]. J Refract Surg, 2016, 32(12): 803-810. DOI: 10.3928/1081597X-20160629-01.
24、Pillunat KR, Herber R, Spoerl E, et al. A new biomechanical glaucoma factor to discriminate normal eyes from normal pressure glaucoma eyes[ J]. Acta Ophthalmol, 2019, 97(7): e962-e967. DOI: 10.1111/ aos.14115.
25、Scarcelli G, Yun SH. Confocal Brillouin microscopy for threedimensional mechanical imaging[ J]. Nat Photonics, 2007, 2: 39-43. DOI: 10.1038/nphoton.2007.250.
26、Scarcelli G, Yun SH. In vivo Brillouin optical microscopy of the human eye[ J]. Opt Express, 2012, 20(8): 9197-9202. DOI: 10.1364/ OE.20.009197.
27、Scarcelli G, Kling S, Quijano E, et al. Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus[ J]. Invest Ophthalmol Vis Sci, 2013, 54(2): 1418-1425. DOI: 10.1167/iovs.12-11387.
28、Seiler TG, Geerling G. Gegenwärtiger stand der brillouin-spektroskopie in der ophthalmologie[ J]. Klin Monbl Augenheilkd, 2023, 240(6): 779-782. DOI: 10.1055/a-2085-5738.
29、Lan G, Aglyamov S, Larin KV, et al. In vivo human corneal natural frequency quantification using dynamic optical coherence elastography: Repeatability and reproducibility[ J]. J Biomech, 2021, 121: 110427. DOI: 10.1016/j.jbiomech.2021.110427.
30、Zhou D, Abass A, Eliasy A, et al. Microstructure-based numerical simulation of the mechanical behaviour of ocular tissue[ J]. J R Soc Interface, 2019, 16(154): 20180685. DOI: 10.1098/rsif.2018.0685.
31、Karimi A, Meimani N, Razaghi R, et al. Biomechanics of the healthy and keratoconic corneas: acombination of the clinical data, finite element analysis, and artificial neural network[ J]. Curr Pharm Des, 2018, 24(37): 4474-4483. DOI: 10.2174/138161282566618122412393 9.
32、Xin Y, Lopes BT, Wang J, et al. Biomechanical effects of tPRK, FSLASIK, and SMILE on the cornea[ J]. Front Bioeng Biotechnol, 2022, 10: 834270. DOI: 10.3389/fbioe.2022.834270.
33、宁吉良, 方石峰, 靳琳, 等. TransPRK与SMILE术后早期角膜生物 力学对比研究[ J]. 中华实验眼科杂志, 2023, 41(11): 1098-1104. DOI: 10.3760/cma.j.cn115989-20211130-00659.
Ning JL, Fang SF, Jin L, et al. Comparison of corneal biomechanics in the early postoperative period between TransPRK and SMILE[ J]. Chin J Exp Ophthalmol, 2023, 41(11): 1098-1104. DOI: 10.3760/cma. j.cn115989-20211130-00659.
34、杨丹丹, 尹禾, 卢丽芳. Corvis ST评估近视患者角膜生物力学参 数及相关影响因素[ J]. 国际眼科杂志, 2023, 23(10): 1754-1759. DOI: 10.3980/j.issn.1672-5123.2023.10.29.
Yang DD, Yin H, Lu LF. Evaluation of corneal biomechanical parameters and related influencing factors in myopic patients by Corvis ST[ J]. Int Eye Sci, 2023, 23(10): 1754-1759. DOI: 10.3980/ j.issn.1672-5123.2023.10.29.
35、Hwang ES, Stagg BC, Swan R, et al. Corneal biomechanical properties after laser-assisted in situ keratomileusis and photorefractive keratectomy[ J]. Clin Ophthalmol, 2017, 11: 1785-1789. DOI: 10.2147/OPTH.S142821.
36、Hashemi H, Asgari S, Mortazavi M, et al. Evaluation of corneal biomechanics after excimer laser corneal refractive surgery in high myopic patients using dynamic scheimpflug technology[ J]. Eye Contact Lens, 2017, 43(6): 371-377. DOI: 10.1097/ICL.0000000000000280.
37、Yu M, Chen M, Dai J. Comparison of the posterior corneal elevation and biomechanics after SMILE and LASEK for myopia: a short- and long-term observation[ J]. Graefes Arch Clin Exp Ophthalmol, 2019, 257(3): 601-606. DOI: 10.1007/s00417-018-04227-5.
38、Reinstein DZ, Archer TJ, Randleman JB. Mathematical model to compare the relative tensile strength of the cornea after PRK, LASIK, and small incision lenticule extraction[ J]. J Refract Surg, 2013, 29(7): 454-460. DOI: 10.3928/1081597X-20130617-03.
39、Seven I, Vahdati A, Pedersen IB, et al. Contralateral eye comparison of SMILE and flap-based corneal refractive surgery: computational analysis of biomechanical impact[ J]. J Refract Surg, 2017, 33(7): 444- 453. DOI: 10.3928/1081597X-20170504-01.
40、Vanathi M, Azimeera S, Gupta N, et al. Study on change in corneal biomechanics and effect of percent tissue altered in myopic laserassisted in situ keratomileusis[ J]. Indian J Ophthalmol, 2020, 68(12): 2964-2974. DOI: 10.4103/ijo.IJO_1453_20.
41、Elmohamady MN, Abdelghaffar W, Daifalla A, et al. Evaluation of femtosecond laser in flap and cap creation in corneal refractive surgery for myopia: a 3-year follow-up[ J]. Clin Ophthalmol, 2018, 12: 935- 942. DOI: 10.2147/OPTH.S164570.
42、He S, Luo Y, Ye Y, et al. A comparative and prospective study of corneal biomechanics after SMILE and FS-LASIK performed on the contralateral eyes of high myopia patients[ J]. Ann Transl Med, 2022, 10(13): 730. DOI: 10.21037/atm-22-330.
43、K amiya K , Shimizu K , Ohmoto F. Time course of cor neal biomechanical parameters after laser in situ keratomileusis[ J]. Ophthalmic Res, 2009, 42(3): 167-171. DOI: 10.1159/000230670.
44、Guo H, Hosseini-Moghaddam SM, Hodge W. Corneal biomechanical properties after SMILE versus FLEX, LASIK, LASEK, or PRK: a systematic review and meta-analysis[ J]. BMC Ophthalmol, 2019, 19(1): 167. DOI: 10.1186/s12886-019-1165-3.
45、李文静, 刘洋, 王政来, 等. 角膜生物力学分析仪评估SMILE与 FS-LASIK术后角膜生物力学的变化[ J]. 国际眼科杂志, 2023,23(11): 1793-1797. DOI: 10.3980/j.issn.1672-5123.2023.11.05.
Li WJ, Liu Y, Wang ZL, et al. Changes in corneal biomechanics after small incision lenticule extraction and femtosecond laser - assisted laser in situ keratomileusis evaluated by corneal visualization Scheimpflug technology[ J]. Int Eye Sci, 2023, 23(11): 1793-1797. DOI: 10.3980/ j.issn.1672-5123.2023.11.05.
46、Wu D, Liu C, Li B, et al. Influence of cap thickness on corneal curvature and corneal biomechanics after SMILE: aprospective, contralateral eye study[ J]. J Refract Surg, 2020, 36(2): 82-88. DOI: 10.3928/1081597X-20191216-01.
47、Jun I, Kang DSY, Roberts CJ, et al. Comparison of clinical and biomechanical outcomes of small incision lenticule extraction with 120- and 140-μm cap thickness[ J]. Transl Vis Sci Technol, 2021, 10(8): 15. DOI: 10.1167/tvst.10.8.15.
48、Damgaard IB, Ivarsen A, Hjortdal J. Refractive correction and biomechanical strength following SMILE with a 110- or 160-μm cap thickness, evaluated ex vivo by inflation test[ J]. Invest Ophthalmol Vis Sci, 2018, 59(5): 1836-1843. DOI: 10.1167/iovs.17-23675.
49、Zarei-Ghanavati S, Jafarzadeh SV, Es’haghi A, et al. Comparison of 110- and 145-μm small-incision lenticule extraction cap thickness: arandomized contralateral eye study[ J]. Cornea, 2024, 43(2): 154-158. DOI: 10.1097/ICO.0000000000003294.
50、Wu F, Yin H, Yang Y. Contralateral eye comparison between 2 cap thicknesses in small incision lenticule extraction: 110 versus 130 μm[ J]. Cornea, 2019, 38(5): 617-623. DOI: 10.1097/ ICO.0000000000001835.

相关文章