返回

糖尿病性黄斑水肿危险因素研究进展

阅读量:5425
DOI:10.12419/24070303
发布日期:2024-07-28
作者:
李梓敬 ,金陈进
展开更多

关键词

糖尿病性黄斑水肿
危险因素
全身因素
眼部因素

摘要

糖尿病性黄斑水肿(diabetic macular edema, DME)是糖尿病最常见和最严重的并发症之一,也是中青年劳动人群常见的致盲原因。DME病理生理机制复杂,是多种因素相互作用的结果,控制这些危险因素是降低发病率的关键。DME是全身病相关性眼病,其发生与发展受众多危险因素的影响,但此前文献对其总结不足,本文从全身因素及眼部因素两个方面就DME的危险因素进行综述。全身危险因素主要包括血糖控制欠佳、糖尿病病程长、高血压、血脂代谢紊乱、肥胖、肾功能异常、妊娠状态、降糖药物使用、贫血、阻塞性睡眠呼吸暂停低通气综合征、遗传因素、吸烟、饮酒、高血钙、低血镁等;而其眼部危险因素主要包括白内障、青光眼及玻璃体切割术、全视网膜激光光凝术、合并视网膜静脉阻塞和相关细胞因子等。深入认识和理解这些危险因素,有助于更好地预防和早期治疗DME,同时为治疗糖尿病视网膜病变过程中控制DME进展提供指引和参考。但是,其中一部分因素还存在一定争议,更多的DME危险因素仍有待进一步探索,期望在不久的将来,更多基础和前瞻性临床研究为DME危险因素及治疗提供高质量的证据。

全文

文章亮点

1. 关键发现

• 文章从全身因素及眼部因素两个方面就糖尿病性黄斑水肿(diabetic macular edema, DME)的危险因素进行综述,为 DME 的防治提供更多理论支持。

2. 已知与发现

• DME 是全身病相关性眼病,其发生与发展受众多危险因素的影响,但此前文献对其总结不足,本文从全身因素及眼部因素两个方面就 DME 的危险因素进行综述。全身危险因素主要包括血糖控制欠佳、糖尿病病程长、高血压、血脂代谢紊乱、肥胖、肾功能异常、妊娠状态、降糖药物使用、贫血、阻塞性睡眠呼吸暂停低通气综合征、遗传因素、吸烟、饮酒、高血钙、低血镁等;而其眼部危险因素主要包括白内障、青光眼及玻璃体切割术、全视网膜激光光凝术、合并视网膜静脉阻塞和相关细胞因子等。

3. 意义与改变

• 深入认识和理解这些危险因素,有助于更好地预防和早期治疗 DME,同时为治疗糖尿病视网膜病变过程中控制 DME进展提供指引和参考。期望在不久的将来,更多基础和前瞻性临床研究为DME 危险因素及治疗提供高质量的证据。

       
糖尿病视网膜病变(diabetic retinopathy, DR)是糖尿病(diabetes mellitus, DM)最常见和最严重的并发症之一,也是中青年劳动人群常见的致盲原因。其中,糖尿病性黄斑水肿(diabetic macular edema, DME)可发生于DR中的任何阶段,是DR影响视功能的最重要原因之一[1]。DME在我国DR患者中的发病率可高达33.62%[2],给家庭和社会带来了沉重的经济负担。DME的主要病理生理机制:1)当血-视网膜色素上皮(retinal pigment epithelium, RPE)屏障受损,毛细血管渗透性增加,蛋白质和水进入视网膜实质层,并在视网膜的内丛状层和外核层之间积聚,使视网膜增厚、外周毛细血管渗出,从而导致DME;2)血管内皮生长因子(vascular endothelial growth factor, VEGF)在DME过程的血-视网膜屏障破坏中起关键作用[3]。长期的DME使光感受器的结构发生变化,导致视功能受损。除此以外,DME还存在其他复杂机制,有待研究者进一步探索。因此,为了更好地预防和治疗DME,本文从全身因素及眼部因素两个方面就DME的危险因素进行相关综述。

1 全身因素

1.1 血糖控制

       血糖控制与DME的发生和发展密切相关。持续的高血糖损伤视网膜血管内皮细胞,影响血-视网膜屏障(blood-retinal barrier, BRB)的完整性,从而使血管通透性增加,蛋白质和水渗漏至视网膜层间。另外,高血糖也导致自由基、糖基化终产物等毒性物质的累积,同样对BRB的结构和功能造成一定损伤 [4]
       糖化血红蛋白(Glycated Hemoglobin A1c, HbA1c)代表了近三个月以来血浆葡萄糖的平均水平,是评估血糖控制的重要指标。HbA1c基线水平越高,发生DME的风险越高。根据Wisconsin等[5-6]进行的流行病学研究(Wisconsin epidemiologic study of diabetic retinopathy, WESDR),HbA1c>12.1% 的DM患者发生DME风险是HbA1c<9.4%的DM患者的3倍。Hammes等[7]纳入德国和奥地利166个研究中心的85 813例患者进行多元回归分析,也得到相似结论:HbA1c>8%是黄斑水肿及DR进展的重要危险因素。但有趣的是,一项来自丹麦的研究[8]显示,高于正常值的HbA1c会同时增加增殖期DR(proliferative diabetic retinopathy, PDR)和DME的风险;与之相反,低于正常值的HbA1c却仅增加PDR的风险。具体的机制尚未阐明。然而,低水平HbA1c是否在抗VEGF药物治疗DME中具有协同作用?在不同研究中,结果有所差异。在一项为期3年的研究中,Bansal等[9]对DME患者进行雷珠单抗眼内注射治疗。但是,视力、中心视网膜厚度(central macular thickness, CMT)和DR严重程度的改善与HbA1c的水平并无明显相关。Wong等[10]则发现,较低的HbA1c(<7%)能使CMT在首次抗VEGF药物治疗中下降得更多。
       Hirsch等[11]首次提出血糖变异性的概念,血糖变异性既可以指日间的血糖波动(如空腹血糖、餐后2 h血糖的波动),也可以指长期血糖的波动(如HbA1c的波动)。有关血糖变异性和DME关系的研究较少,仅有一项来自中国台湾的前瞻性研究[12]。该研究指出,空腹血糖高变异性是2型DM患者发生DME的危险因素。而其他研究显示,在1型DM 患者中,HbA1c高变异性是DR的危险因素,但空腹血糖高变异性并非DR的危险因素[13-14]。这些差异可能与DM类型、病情进展速度等多种因素相关。
       血糖的短期内迅速改善也可能会导致DR或DME的加重。在减重手术后、接受胰岛素强化治疗后、胰腺移植术后等情况中均可出现[15-16]。其可能的机制:HbA1c的快速下降,会降低血管内渗透压,在细胞内外产生渗透梯度,导致体液从高渗透压水平移动到低渗透压水平,而视网膜血管正是较敏感的低压区域[17];同时也会减少视网膜血流量,使血液供应不足,同时自身血流调节受损[18]。所以,高水平的HbA1c、高血糖变异性和血糖的短期改善均是DME的危险因素。

1.2 糖尿病病程

       糖尿病病程是DME较明确的危险因素。众多流行病学证据显示,糖尿病病程越长,DME发生风险越高[6, 19-22]。根据一项美国研究显示,糖尿病病程>10年的患者患DME的风险是糖尿病病程<10年患者的8.5倍[20]。英国DR筛查项目相关数据显示,基线时无DR的2型DM患者在随访5年以后出现DR、PDR和DME的累积发病率分别为36%、0.7%和0.6%,而在随访10年以后,累积发病率分别上升至66%、1.5%和1.2%[22]。在WESDR1型DM患者队列25年随访过程中,97%的患者随时间的推移发展为DR,而1/3~1/2的患者又陆续发展为PDR(42%) 或DME(29%)[6, 21]。但是,上述累积发病率的增长速度随患者年龄增长先快后慢,可能是因为随着年龄增长,竞争性死亡风险随之增加。因此,加强宣教,减少DM患病,对防止DME的发生和延缓发展具有极其重要的意义。

1.3 高血压

       高血压是DME的另一重要危险因素。高血压可增加视网膜血管中的灌注压力,进一步损伤血管内皮,增加血管通透性,同时损伤视网膜血管的自身调节能力[23]。另外,高血压引起动脉基底膜增厚,容易引起附近静脉阻塞,从而进一步影响其与眼部动静脉的沟通[24]。临床研究表明,高血压与DME关系密切。在一项北欧的DR流行病学研究[8]中,收缩压和舒张压的升高都会增加DME进展的风险,而舒张压的升高仅增加PDR进展的风险。Martín-Merino等[25]的研究显示:收缩压>160 mmHg(1 mmHg=0.133 kPa)的患者发生DME的风险是收缩压≤160 mmHg患者的2倍。Lopes de Faria等[26]的研究指出当收缩压超过160 mmHg,每增加10 mmHg,DME风险增加23%。一项DME研究也发现,视网膜厚度与脉压水平(收缩压和舒张压之差)呈正相关[27]。高血压和动脉粥样硬化等因素使动脉壁弹性减弱,从而影响脉压,这也间接证明了高血压与DME存在一定的关系。
       另外,一些临床研究也提示,DME患眼可能存在血流动力学异常,这可能也是DME与高血压相关的重要证据。Park等[28]使用海德堡视网膜血流计测量单眼DME患者双眼的黄斑区血流量,并发现DME患眼的黄斑区血流量较对侧眼显著升高。与之相反,Sakata等[29]的研究却发现,有临床意义的黄斑水肿(clinically significant macular edema, CSME)的患眼、不伴CSME的患眼和对照组的患眼三组的中心凹旁毛细血管血流速度依次增加。这些差异可能与DME严重程度、病程的发展等因素有一定关系。Kase等[30]还指出,累及黄斑中心凹的DME(central-involved DME, CI-DME)患眼的脉络膜厚度/面积的平均值均高于无DME患眼,这可能与脉络膜血管的扩张和灌注变化密切相关,并且这些CI-DME患者的收缩压和舒张压比无DME患者高。因此,高血压可能通过直接或间接的方式增加DME发生或发展的风险。

1.4 血脂代谢紊乱

       血脂异常机制十分复杂。DM可促进血脂异常。DM通过中枢和视网膜组织特异性机制调节多种脂类摄取、重塑和清除的过程[31-32]。同时,胰岛素抵抗可升高低密度脂蛋白(low density lipoprotein, LDL)、总胆固醇(total cholesterol, TC)、甘油三酯(triglyceride, TG)和游离脂肪酸,降低高密度脂蛋白(high density lipoprotein, HDL),并抑制反向胆固醇转运基因[33-35]。另一方面,血脂异常可通过多种方式影响视网膜血管系统。脂质沉积形成动脉粥样硬化斑块,可进一步阻塞血管,导致缺血、缺氧。此外,局部炎症反应和VEGF等也会导致内皮功能障碍,从而损害BRB,增加血管通透性,促进DME发生[36]
       一项探究血脂异常和DME临床关系的荟萃分析显示,在DM患者中,有DME的患者的TC、TG和LDL水平比无DME的患者明显升高[37];而HDL与是否发生DME无关。这可能是因为LDL颗粒对内皮细胞具有一定的毒性[35],而HDL具有反向胆固醇转运、抗氧化、抗炎、扩张血管等作用[38]。一些研究也阐明了TC、LDL及TC/HDL比值与DME和硬性渗出的严重程度呈正相关[39-40]。近年有研究者指出,血清载脂蛋白(apolipoprotein, Apo)与DR或DME的联系可能比传统的血脂指标更强[41]。Wong等[10]的研究表明,ApoB与ApoA1比值越高,DME发生风险越高。
       多项临床研究证明,调脂药物可改善DME或降低DME发生率。Massin等[42]研究指出,在暂不需立即进行眼内注药治疗或激光治疗的DME患者中单独使用非诺贝特,治疗组的黄斑容量改善多于对照组。Gupta等[43]的研究则显示,2型DM伴血脂异常患者在接受黄斑局部格栅样光凝期间,口服阿托伐他汀可降低CSME中硬性渗出和中心凹下脂质迁移。然而,也有研究[44]指出,调脂药物与DME的发生或发展无明显关系。因此,还需要通过多中心、大样本量的前瞻性研究去证实它们之间的关系。

1.5 肥胖

       肥胖对DME的影响在不同研究中有所不同。最近,广州DM眼病研究[45]发现:腰/臀比与DR严重程度呈正相关,而腰/身高比和身体肥胖指数分别与DR/DME严重程度呈负相关。因此,在这项研究中,肥胖可能是DME的保护因素。另外的两项研究却有相反的结果。一项瑞典研究[46]对15~34岁的1型和2型DM患者进行了为期10年的随访,发现身体质量指数(body mass index, BMI)较高的个体更容易发生DR。Hammes等[7]的研究也显示BMI>35 kg/m2 是DR 和DME的重要危险因素。可见,肥胖可能并非独立的危险因素,这些研究结论存在差异的原因,可能与肥胖所引起的血糖、血脂、血压异常程度及是否出现其他并发症有一定关系。

1.6 肾功能异常

       肾功能异常主要表现为蛋白尿和低肾小球滤过率。Hsieh 等[47-48]在中国台湾2个医疗中心纳入2 135例2型DM 患者,并进行8年随访,结果发现基线尿白蛋白/肌酐比值越高(>30 mg/g),DME发生和发展的风险越高;而微量白蛋白尿的减少是DME的保护因素。另一项美国研究纳入725例1型非裔DM患者,也得到了相似的结果,大量蛋白尿(OR=11.83)和微量蛋白尿(OR=4.17)均为DME的重要危险因素[49]。另外,他们根据估算肾小球滤过率(estimated glomerular filtration rate, eGFR)对糖尿病慢性肾脏病患者进行分期并发现,在晚期慢性肾脏病患者中,囊样黄斑水肿最常见;椭圆体带缺损可能是这类患者的光学相干断层扫描(optical coherence tomography, OCT)生物标志物[50]。但是,在Temkar[51]及Man 等[52]的研究中,eGFR水平和DME的严重程度并无统计学意义。因此,蛋白尿与DME关系可能更密切;而GFR与DME关联度较小。
       也有部分文献提示,血液透析有助于改善DME[53-54]。顽固性DME或伴有硬性渗出的DME患者在接受血液透析后都获得了不同程度的改善[55]。Theodossiadis等[54]对36例终末期糖尿病肾病患者的72只患眼(伴或不伴DME)进行评估后发现,血液透析可减少DME患眼的CMT,但对不伴DME的患眼作用不明显。
       蛋白尿的出现降低血清渗透压,而血液透析能提高血清渗透压,这可能是它们影响DME的主要原因[54]

1.7 妊娠状态

       妊娠期间,体内激素的剧烈变化会使孕妇出现受孕前不存在的DR,但这些病变往往在产后自然消退;在妊娠开始时存在的非增殖期DR(non-proliferative diabetic retinopathy, NPDR)或DME也较少进展为PDR;在妊娠开始时存在的PDR继续进展的风险非常高,应在早期进行激光或眼内注药等治疗[56]。根据最近丹麦学者一项研究可知,在1型DM患者中,5%的患者在妊娠早期已有DME,2%的患者在妊娠期间发生DME。在妊娠早期有DME而未接受治疗的 20只患眼中,50%患眼的DME自发消退;而在2型DM中,没有患者在妊娠早期发生DME,而且只有1%患者在妊娠期间新发DME[57]。另外,DM也会使妊娠期妇女的激素变化更加剧烈,从而促进DR和DME进展。DM妊娠女性的孕酮、胎盘催乳素水平比非DM妊娠女性显著增加,血清催乳素水平显著下降[58]。除了妊娠本身,DM持续时间、病程、血糖控制、血糖急速下降至正常水平、妊娠初期DR严重程度、高血压、高血脂、DR等因素也在DME的发生和发展中起重要作用[56,59]。虽然NPDR或DME在妊娠晚期或产后期的消退率较高,但关于妊娠与DME的关系尚无大样本的前瞻性证据,规律随访、密切监测患者的视功能和视网膜形态结构十分必要。

1.8 降糖药物使用

       格列酮类药物在治疗胰岛素抵抗的同时,会引起水钠潴留,可能会增加充血性心力衰竭和DME的风险[60-62]。格列酮类药物引起DME的可能机制:1)增加视网膜血管内皮细胞通透性;2)增加VEGF的浓度3)增加血浆容量;4)提高血压;5)改变肾脏排泄和肠道离子转运[62-64]。一项美国前瞻性研究对17 000例DM患者进行危险因素分析,发现使用格列酮类药物的DM患者发生DME的风险是不使用该类药物患者的2.6倍[63]。另一项小样本量的研究报道,在停止使用格列酮类药物后,DME大多有不同程度的消退,但速度因人而异[64]。然而,ACCORD研究的结论与上述研究不同,无论是从横断面还是纵向队列分析均显示,格列酮类药物与DME的发生和发展无关联[65- 66]
       其他降糖药物也存在一些争议。Phu等[67]的研究显示,胰高血糖素样肽-1(glucagon-like peptide-1, GLP-1)受体激动剂和钠-葡萄糖协同转运蛋白2(sodium-dependent glucose transporters 2, SGLT2)抑制剂与DME的发生无明显关系。另一回顾性研究则指出,使用GLP-1受体激动剂的DM患者DME发生率较使用SGLT2抑制剂的明显升高[68]。但也有文献报道,GLP-1受体激动剂和SGLT2抑制剂均主要通过降低血糖来减少DME发生和发展的风险,GLP-1受体激动剂还有抗炎和保护血管的作用,可能也在一定程度上协同减少DME的风险[69-70]
       因此,降糖药物的使用与DME风险的关系仍需更多基础和临床证据的支持。

1.9 贫血

       贫血引起的缺血、缺氧会进一步损伤视网膜血管内皮,增加BRB的损伤及血管通透性,从而更容易引起DME[71]。在一项纳入69 982例NPDR患者的回顾性研究中,10 322例患者为DME,贫血严重程度与DME发生和发展的危险性呈正比(轻度贫血OR为1.06;中重度贫血OR为1.14)[72]。在印度,另一项为期2年的前瞻性研究[71]纳入306例2型DM患者,也得到了相似的结论。既往也有研究使用促红细胞生成素(Erythropoietin, EPO)治疗DME,但效果并不一致。Friedman等[73]使用EPO治疗3例氮质血症的贫血患者,3例患者的血细胞比容有所改善,视力及DME均比之前有所好转。然而,在另一项治疗顽固性DME的随机双盲试验[74]中,贝伐珠单抗联合EPO与单独贝伐单抗治疗在6个月随访时间内疗效相似。在DM患者中,贫血也会和肾脏疾病、高血压等多种疾病共存,共同促进DME的发生和进展[75]

1.10 阻塞性睡眠呼吸暂停低通气综合征

       阻塞性睡眠呼吸暂停低通气综合征(obstructive sleep apnea-hypopnea syndrome, OSAHS)与DME存在密切关系。Vié等[76]和Chiang等[77]的临床研究指出,重度OSAHS是DME的危险因素。除此以外,氧分压低于90%的累积时间越长,DME发生和发展风险越高;而且,重度OSAHS 的患者发生难治性DME的比例较高。Yang等的研究[78]提示:有OSAHS 的DME患者的血清表皮生长因子、细胞间黏附分子和白介素-6(interleukin-6, IL-6)等炎性因子水平比不伴OSAHS 的DME患者明显升高。尽管上述研究均显示OSAHS 与DME存在相关性,但确切的机制尚未阐明。OSAHS 引起的低氧血症、高血压和高碳酸血症可能是引起和加重DME的主要原因[79]

1.11 遗传

       遗传因素在DME的发生和发展中也可能发挥重要作用。目前,相关基因包括VEGF-A、VEGFC、ApoE、一氧化氮合酶(nitric oxide synthase, NOS)、超氧化物歧化酶(superoxide dismutase, SOD)等。
       VEGF由VEGF-A、VEGF-B、VEGF-C、VEGF-D和胎盘生长因子(placental growth factor, PlGF)组成。VEGF-A主要作用为血管发育和血管生成,与DR或DME关系密切。VEGFA具有多态性。Awata等[80]和Shazly等[81]均发现DME患者中-634C>G CC基因型和C等位基因频率显著增加。但是,Tetikoğlu等[82]的研究仅发现-634C>G[rs2010963]与DR的严重程度有明显的关联,却尚未发现其与抗VEGF治疗DME效果存在关系。VEGF-C主要与VEGF-D一起通过与VEGF受体(VEGFR)结合,促进淋巴管形成,这可能在DME中有重要作用[83-84]。VEGF-C的rs17697515在2型DM 患者中与 DME 发生风险呈负相关(OR=0.53,95%CI 0.35~0.82)[85]
       ApoE主要作用是运输脂质,近年来发现可能与DME相关。它具有三个等位基因ε2、ε3和ε4,并且在视网膜中高度表达。一项墨西哥学者的研究显示:Apoε4基因的携带者黄斑硬性渗出发生的比例较高[86]。而另一项研究则发现Apoε2和Apoε3在PDR和DME患者的玻璃体液中的表达增加,并且ε2和ε3可能参与视网膜新生血管的形成和发展[87]
       NOS协助产生一氧化氮,一氧化氮可损伤血管内皮细胞。NOS主要分为三型,分别为神经元型NOS(NOS-1)、诱导型NOS(NOS-2)和内皮型NOS(NOS-3)[88]。NOS-3被认为是与DME关系最密切的基因。一项日本学者的研究分析了2型DM患者NOS-3的基因多态性,结果发现DME患者的-786T>C多态性和DME发生风险显著相关;而894G>T多态性与DME发生风险无关[89]
       SOD2编码锰超氧化物歧化酶(manganese superoxide dismutase, MnSOD),MnSOD可以减轻超氧自由基的破坏作用[90]。SOD2中的Ala等位基因多态性与DME发生风险相关。一项韩国研究[91]显示:DME组Ala等位基因频率显著降低。
       除此以外,EPO、色素上皮衍生因子、醛糖还原酶、微小RNA等也在相关文献中有所报道[92-95]。但是,总的来说,遗传因素在DME中的研究相对较少,需要进行大规模的研究,以获得更高质量的证据。

1.12 其他

       还有研究显示,吸烟、饮酒、高血钙、低血镁等也有可能是DME的危险因素[96-98]

2 眼部因素

2.1 白内障、青光眼及玻璃体切割手术

       无论DM患者术前是否存在DR,在进行白内障手术后DME发生和发展风险增加。原有的PDR患者术后DME发病率可达12%[99],而目前存在DME或既往曾发生DME的患者术后发病率可高达50%[100]。一项多中心、前瞻性研究纳入了293 例DR患者,这项研究指出,对于无CI-DME的DR患者而言,术前出现未累及中心凹的DME或有 DME 治疗史可能会增加白内障术后16周内发生CI-DME的风险[101]。Bek 等[102]的研究还表明,DME的风险在白内障手术后的前5年最高,随后风险降低,并在20年后达到稳定。此外,在术后不同时间、不同的因素会增加DME的风险:术后0.5~5年以HbA1c和收缩压为主;术后5~20年以HbA1c为主;术后20年以舒张压为主。与非DM患者相比,DM患者在接受白内障手术后,由于手术创伤使一系列促炎因子和促新生血管生成因子升高,进一步损伤视网膜血管内皮,使DM患者已受损的BRB屏障损伤加重,DME随之发生和发展[103-104]。因此,在DM患者中,尤其是DME患者在白内障手术围术期进行眼内抗炎和抗新生血管治疗,可以有效降低DME进展的风险[105-107]。在一项澳大利亚学者的研究中,DME患者被分为两组,在白内障手术时分别接受玻璃体腔贝伐珠单抗及曲安奈德注射,两组患者在术后6个月均获得了显著的视力改善[105]。一项意大利学者的研究显示,在DME患者白内障手术结束时进行玻璃体腔地塞米松缓释剂注射可延缓DME进展和复发[106]
       据此类推:在DM患者中,与白内障手术相似,青光眼、玻璃体切割等手术操作也有可能会在一定程度上造成眼内损伤、破坏BRB屏障,引起眼内炎症,从而促进DME的发生和发展。但是目前缺少相关的文献证据。相反,Behera等[108]发现,使用玻璃体切割术治疗PDR后,对新发DME的治疗可以延迟1年,因为这种DME可能会随着时间自发消退,这可能与减少玻璃体对视网膜的牵拉、炎症因子的清除有一定关系。

2.2 全视网膜激光光凝术

        全视网膜激光光凝术(pan-retinal photocoagulation, PRP)是治疗重度NPDR和PDR的最佳手段之一[109]。激光治疗通过损伤周边视网膜细胞和血管,从而减少视网膜的耗氧量,增加对中心视网膜的氧灌注,同时下调VEGF,从而减少新生血管生成[110-111]。但是,激光治疗一方面通过热效应引起炎性因子的变化,另一方面破坏了血眼屏障,从而使DME发生和发展[112]。与抗VEGF治疗相比,PRP似乎更容易引起和促进DME。美国学者一项前瞻性随机对照研究纳入了55个医疗中心305例PDR患者,一组行PRP,另一组行雷珠单抗玻璃体腔注射,经过2年随访;在基线无DME的患者中,雷珠单抗组DME发生率为9%,而PRP组为28%;雷珠单抗组CMT减少(18±37) µ m,PRP组增加(10±54) µ m[113-114]。而在基线DME的患者中,雷珠单抗组CMT减少(153±129) µ m,PRP组减少(48±124) µ m。当随访到达第5年时,在基线无DME的患者中,雷珠单抗组DME发生率为22%,而PRP组为38%;而在基线DME的患者中,雷珠单抗组CMT减少(139±157) µ m,PRP组减少(59±102) µ m。根据Bressler等[115]的研究,单纯使用 PRP 治疗PDR时,高水平的HbA1c及严重程度更高的DR与CI-DME发生风险增加有关;但单纯使用雷珠单抗治疗PDR 时,并无与增加CI-DME发生风险相关的基线特征。因此,单独使用PRP治疗PDR时需更关注血糖控制和密切监测DR的进展。

2.3 合并视网膜静脉阻塞

       日本一项纳入17 403例患者的研究[116]对39个全身性危险因素和16个眼部危险因素进行Logistic回归分析,发现合并视网膜静脉阻塞(retinal vessel occlusion, RVO)为与DME最相关的眼部危险因素之一。RVO、DR和DME等眼部疾病代表视网膜血液循环出现障碍,这些疾病可能会相互促进,互为危险因素。另外,DM患者通常合并高血压、高血脂等全身病,全身代谢和循环障碍也促进了上述眼病的相伴发生[117-118]

2.4 细胞因子

       上述DME眼内危险因素,归根结底,大多是通过提高眼内VEGF和炎性因子水平来促进DME的发生和发展。因此,高水平的眼内VEGF和炎性因子可能是DME发生的核心危险因素。
       VEGF主要通过增加血管通透性和促进炎症诱发DME。VEGF与VEGFR结合发挥作用。VEGFR主要分为VEGFR-1和VEGFR-2。VEGFR-1主要由单核及巨噬细胞表达,协助募集白细胞至炎症部位[119]。VEGF(如PlGF等)与VEGFR-1结合并促进单核细胞产生促炎因子[120]。另一方面,VEGFR-2存在于内皮细胞中。VEGF与VEGFR-2结合可通过核转录因子κB(nuclear factor-κB, NF-κB)等信号通路上调炎症因子,同时增加血管通透性[119, 121]。一项荟萃分析纳入了128项研究,其中包括4 163只DME患眼和1 281只对照眼[122]。DME患眼前房及玻璃体中的VEGF水平高于对照组。研究同时发现,房水中IL-6、IL-8和单核细胞趋化蛋白-1(monocytechemotactic protein-1, MCP-1)水平在DME患眼中也显著升高。IMAGINE DME研究和另一项研究均指出,对抗VEGF治疗反应较好的DME患眼,基线房水VEGF水平较高;而抗VEGF治疗反应较差的患眼,基线房水VEGF水平较低[123-124]。所以,在DME的治疗中,治疗反应差异性与眼内细胞因子密切相关。对于抗VEGF治疗不敏感的患眼,专门的抗炎治疗也很必要。一项西班牙学者的研究[125]纳入16只DME患眼,给予玻璃体腔地塞米松植入治疗,2月后发现干扰素诱导蛋白-10(interferon-inducible protein-10, IP-10)和MCP-1水平急剧下降;然而到DME复发时,IP-10、MCP-1、IL-6和IL-8的水平均显著上升。由此可见,炎性因子在DME的发展中具有重要作用。

2.5 其他

       最近,还有研究者指出,房水中高水平的尿酸有可能是DME的危险因素之一[126]

3 结语

       综上,DME病理机制复杂,包括血-视网膜屏障和色素上皮屏障受损、VEGF过度表达等。它严重影响患者的视力和生活质量。随着社会发展和科技进步,DME危险因素相关研究也越来越深入。其全身危险因素主要包括血糖控制欠佳、糖尿病病程长、高血压、血脂代谢紊乱、肥胖、肾功能异常、妊娠状态、降糖药物使用、贫血、阻塞性睡眠呼吸暂停低通气综合征、遗传因素、吸烟、饮酒、高血钙、低血镁等;而其眼部危险因素主要包括白内障、青光眼及玻璃体切割术、PRP、合并RVO和相关细胞因子等。深入认识和理解这些危险因素,有助于更好地预防和早期治疗DME,同时为治疗DR过程中控制DME进展提供指引和参考。但是,其中一部分因素还存在一定争议,更多的DME危险因素仍有待进一步探索,期望在不久的将来,更多基础和前瞻性临床研究为DME危险因素及治疗提供高质量的证据。

利益冲突

所有作者均声明不存在利益冲突。

开放获取声明

本文适用于知识共享许可协议 ( Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。

基金

1、广东省医学科研基金(A2024187)。
This work was supported by Guangdong Medical Research Fund(A202418).

参考文献

1、Klaassen I, Van Noorden CJF, Schlingemann RO. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions[ J]. Prog Retin Eye Res, 2013, 34: 19-48. DOI: 10.1016/j.preteyeres.2013.02.001.
2、阿柏西普玻璃体内注射治疗糖尿病性黄斑水肿中国共识专家组. 阿柏西普玻璃体内注射治疗糖尿病性黄斑水肿中国专家 共识(2021)[ J]. 中华实验眼科杂志, 2021, 39(5): 369-375. DOI: 10.3760/cma.j.cn115989-20210202-00088.
Chinese expert consensus group for the intravitreal injection of abicept for the treatment of diabetes macular edema.Chinese experts consensus for the intravitreal injection of aflibercept treating diabetic macular edema (2021)[ J]. Chin J Exp Ophthalmol, 2021, 39(5): 369-375. DOI: 10.3760/cma.j.cn115989-20210202-00088.
3、Daruich A, Matet A, Moulin A, et al. Mechanisms of macular edema: beyond the surface[ J]. Prog Retin Eye Res, 2018, 63: 20-68. DOI: 10.1016/j.preteyeres.2017.10.006.
4、Diep TM, Tsui I. Risk factors associated with diabetic macular edema[ J]. Diabetes Res Clin Pract, 2013, 100(3): 298-305. DOI: 10.1016/j.diabres.2013.01.011.
5、Klein R, Klein BE, Moss SE, et al. The Wisconsin Epidemiologic Study of Diabetic Retinopathy. XV. The long-term incidence of macular edema[ J]. Ophthalmology, 1995, 102(1): 7-16. DOI: 10.1016/s0161- 6420(95)31052-4.
6、Klein R, Knudtson MD, Lee KE, et al. The Wisconsin Epidemiologic Study of Diabetic Retinopathy XXIII: the twenty-five-year incidence of macular edema in persons with type 1 diabetes[ J]. Ophthalmology, 2009, 116(3): 497-503. DOI: 10.1016/j.ophtha.2008.10.016.
7、Hammes HP, Welp R, Kempe HP, et al. Risk factors for retinopathy and DME in type 2 diabetes-results from the german/austrian DPV database[ J]. PLoS One, 2015, 10(7): e0132492. DOI: 10.1371/ journal.pone.0132492.
8、Bek T. Systemic risk factors contribute differently to the development of proliferative diabetic retinopathy and clinically significant macular oedema[ J]. Diabetologia, 2020, 63(11): 2462-2470. DOI: 10.1007/ s00125-020-05234-0.
9、Bansal AS, Khurana RN, Wieland MR, et al. Influence of glycosylated hemoglobin on the efficacy of ranibizumab for diabetic macular edema: a post hoc analysis of the RIDE/RISE trials[ J]. Ophthalmology, 2015, 122(8): 1573-1579. DOI: 10.1016/j.ophtha.2015.04.029.
10、Wong WM, Chee C, Bhargava M, et al. Systemic factors associated with treatment response in diabetic macular edema[ J]. J Ophthalmol, 2020, 2020: 1875860. DOI: 10.1155/2020/1875860.
11、H i r s c h I B, B r o w n l e e M . S h o u l d m i n i m a l b l o o d g l u c o s e variability become the gold standard of glycemic control?[ J]. J Diabetes Complications, 2005, 19(3): 178-181. DOI: 10.1016/ j.jdiacomp.2004.10.001.
12、Hsieh YT, Hsieh MC. Fasting plasma glucose variability is an independent risk factor for diabetic retinopathy and diabetic macular oedema in type 2 diabetes: an 8-year prospective cohort study[ J]. Clin Exp Ophthalmol, 2020, 48(4): 470-476. DOI: 10.1111/ceo.13728.
13、Hietala K, Wadén J, Forsblom C, et al. HbA1c variability is associated with an increased risk of retinopathy requiring laser treatment in type 1 diabetes[ J]. Diabetologia, 2013, 56(4): 737-745. DOI: 10.1007/ s00125-012-2816-6.
14、Sartore G, Chilelli NC, Burlina S, et al. Association between glucose variability as assessed by continuous glucose monitoring (CGM) and diabetic retinopathy in type 1 and type 2 diabetes[ J]. Acta Diabetol, 2013, 50(3): 437-442. DOI: 10.1007/s00592-013-0459-9.
15、Bain SC, Klufas MA, Ho A, et al. Worsening of diabetic retinopathy with rapid improvement in systemic glucose control: a review[ J]. Diabetes Obes Metab, 2019, 21(3): 454-466. DOI: 10.1111/ dom.13538.
16、Feldman-Billard S, Larger é, Massin P, et al. Early worsening of diabetic retinopathy after rapid improvement of blood glucose control in patients with diabetes[ J]. Diabetes Metab, 2018, 44(1): 4-14. DOI: 10.1016/j.diabet.2017.10.014.
17、Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group[ J]. Lancet, 1998, 352(9131): 837-853.
18、Aiello LP, Group DR. Diabetic retinopathy and other ocular findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study[ J]. Diabetes Care, 2014, 37(1): 17-23. DOI: 10.2337/dc13-2251.
19、Graue-Hernandez EO, Rivera-De-La-Parra D, Hernandez-Jimenez S, et al. Prevalence and associated risk factors of diabetic retinopathy and macular oedema in patients recently diagnosed with type 2 diabetes[ J]. BMJ Open Ophthalmol, 2020, 5(1): e000304. DOI: 10.1136/ bmjophth-2019-000304.
20、Varma R , Bressler NM, Doan QV, et al. Prevalence of and risk factors for diabetic macular edema in the United States[ J]. JAMA Ophthalmol, 2014, 132(11): 1334-1340. DOI: 10.1001/ jamaophthalmol.2014.2854.
21、Klein R, Knudtson MD, Lee KE, et al. The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes[ J]. Ophthalmology, 2008, 115(11): 1859-1868. DOI: 10.1016/j.ophtha.2008.08.023.
22、Jones CD, Greenwood RH, Misra A, et al. Incidence and progression of diabetic retinopathy during 17 years of a population-based screening program in England[ J]. Diabetes Care, 2012, 35(3): 592-596. DOI: 10.2337/dc11-0943.
23、Gillow JT, Gibson JM, Dodson PM. Hypertension and diabetic retinopathy: what's the story?[ J]. Br J Ophthalmol, 1999, 83(9): 1083- 1087. DOI: 10.1136/bjo.83.9.1083.
24、Guan K, Hudson C, Wong T, et al. Retinal hemodynamics in early diabetic macular edema[ J]. Diabetes, 2006, 55(3): 813-818. DOI: 10.2337/diabetes.55.03.06.db05-0937.
25、Martín-Merino E, Fortuny J, Rivero-Ferrer E, et al. Risk factors for diabetic macular oedema in type 2 diabetes: a case-control study in a United Kingdom primary care setting[ J]. Prim Care Diabetes, 2017, 11(3): 288-296. DOI: 10.1016/j.pcd.2017.03.002.
26、Lopes de Faria JM, Jalkh AE, Trempe CL, et al. Diabetic macular edema: risk factors and concomitants[ J]. Acta Ophthalmol Scand, 1999, 77(2): 170-175. DOI: 10.1034/j.1600-0420.1999.770211.x.
27、Dupas B, Feldman-Billard S, Bui Quoc E, et al. Influence of pulse pressure and spontaneous variations of macular thickness in patients with diabetic macular oedema[ J]. Acta Ophthalmol, 2014, 92(5): e372-e376. DOI: 10.1111/aos.12369.
28、Park JH, Woo SJ, Ha YJ, et al. Macular capillary blood flow in patients with diffuse diabetic macular edema without vitreomacular traction[ J]. Ophthalmic Res, 2009, 42(2): 73-80. DOI: 10.1159/000220599.
29、Sakata K, Funatsu H, Harino S, et al. Relationship between macular microcirculation and progression of diabetic macular edema[ J]. Ophthalmology, 2006, 113(8): 1385-1391. DOI: 10.1016/ j.ophtha.2006.04.023.
30、Kase S, Endo H, Takahashi M, et al. Alteration of choroidal vascular structure in diabetic macular edema[ J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(5): 971-977. DOI: 10.1007/s00417-020- 04604-z.
31、Tikhonenko M, Lydic TA, Wang Y, et al. Remodeling of retinal Fatty acids in an animal model of diabetes: a decrease in long-chain polyunsaturated fatty acids is associated with a decrease in fatty acid elongases Elovl2 and Elovl4[ J]. Diabetes, 2010, 59(1): 219-227. DOI: 10.2337/db09-0728.
32、Busik JV, Esselman WJ, Reid GE. Examining the role of lipid mediators in diabetic retinopathy[ J]. Clin Lipidol, 2012, 7(6): 661-675. DOI: 10.2217/clp.12.68.
33、Ginsberg HN, Zhang YL, Hernandez-Ono A. Regulation of plasma triglycerides in insulin resistance and diabetes[ J]. Arch Med Res, 2005, 36(3): 232-240. DOI: 10.1016/j.arcmed.2005.01.005.
34、Goff DC Jr, D'Agostino RB Jr, Haffner SM, et al. Insulin resistance and adiposity influence lipoprotein size and subclass concentrations. Results from the Insulin Resistance Atherosclerosis Study[ J]. Metabolism, 2005, 54(2): 264-270. DOI: 10.1016/j.metabol.2004.09.002.
35、Wu L, Parhofer KG. Diabetic dyslipidemia[ J]. Metabolism, 2014, 63(12): 1469-1479. DOI: 10.1016/j.metabol.2014.08.010.
36、Wong BW, Rahmani M, Luo Z, et al. Vascular endothelial growth factor increases human cardiac microvascular endothelial cell permeability to low-density lipoproteins[ J]. J Heart Lung Transplant, 2009, 28(9): 950-957. DOI: 10.1016/j.healun.2009.05.005.
37、Das R, Kerr R, Chakravarthy U, et al. Dyslipidemia and diabetic macular edema: a systematic review and meta-analysis[ J]. Ophthalmology, 2015, 122(9): 1820-1827. DOI: 10.1016/j.ophtha.2015.05.011.
38、Annema W, von Eckardstein A . High-densit y lipoproteins. Multifunctional but vulnerable protections from atherosclerosis[ J]. Circ J, 2013, 77(10): 2432-2448. DOI: 10.1253/circj.cj-13-1025.
39、Chew EY, Klein ML, Ferris FL 3rd, et al. Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early Treatment Diabetic Retinopathy Study (ETDRS) Report 22[ J]. Arch Ophthalmol, 1996, 114(9): 1079-1084. DOI: 10.1001/ archopht.1996.01100140281004.
40、Romero-Aroca P, Baget-Bernaldiz M, Fernandez-Ballart J, et al. Tenyear incidence of diabetic retinopathy and macular edema. Risk factors in a sample of people with type 1 diabetes[ J]. Diabetes Res Clin Pract, 2011, 94(1): 126-132. DOI: 10.1016/j.diabres.2011.07.004.
41、Sasongko MB, Wong TY, Nguyen TT, et al. Serum apolipoprotein AI and B are stronger biomarkers of diabetic retinopathy than traditional lipids[ J]. Diabetes Care, 2011, 34(2): 474-479. DOI: 10.2337/dc10- 0793.
42、Massin P, Peto T, Ansquer JC, et al. Effects of fenofibric acid on diabetic macular edema: the MacuFen study[ J]. Ophthalmic Epidemiol, 2014, 21(5): 307-317. DOI: 10.3109/09286586.2014.949783.
43、Gupta A, Gupta V, Thapar S, et al. Lipid-lowering drug atorvastatin as an adjunct in the management of diabetic macular edema[ J]. Am J Ophthalmol, 2004, 137(4): 675-682. DOI: 10.1016/j.ajo.2003.11.017.
44、Keech AC, Mitchell P, Summanen PA, et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial[ J]. Lancet, 2007, 370(9600): 1687-1697. DOI: 10.1016/S0140-6736(07)61607-9.
45、Li W, Gong X, Wang W, et al. Association of different kinds of obesity with diabetic retinopathy in patients with type 2 diabetes[ J]. BMJ Open, 2022, 12(5): e056332. DOI: 10.1136/bmjopen-2021-056332.
46、Henricsson M, Nyström L, Blohmé G, et al. The incidence of retinopathy 10 years after diagnosis in young adult people with diabetes: results from the nationwide population-based Diabetes Incidence Study in Sweden (DISS)[ J]. Diabetes Care, 2003, 26(2): 349-354. DOI: 10.2337/diacare.26.2.349.
47、Hsieh YT, Tsai MJ, Tu ST, et al. Association of abnormal renal profiles and proliferative diabetic retinopathy and diabetic macular edema in an Asian population with type 2 diabetes[ J]. JAMA Ophthalmol, 2018, 136(1): 68-74. DOI: 10.1001/jamaophthalmol.2017.5202.
48、Hsieh YT, Hsieh MC. Time-sequential correlations between diabetic kidney disease and diabetic retinopathy in type 2 diabetes - an 8-year prospective cohort study[ J]. Acta Ophthalmol, 2021, 99(1): e1-e6. DOI: 10.1111/aos.14487.
49、Roy MS, Klein R . Macular edema and retinal hard exudates in African Americans with type 1 diabetes: the New Jersey 725[ J]. Arch Ophthalmol, 2001, 119(2): 251-259.
50、Agarwal M, Sachdeva M, Shah S, et al. Correlating the patterns of diabetic macular edema, optical coherence tomography biomarkers and grade of diabetic retinopathy with stage of renal disease[ J]. Int Ophthalmol, 2022, 42(11): 3333-3343. DOI: 10.1007/s10792-022- 02332-3.
51、Temkar S, Karuppaiah N, Takkar B, et al. Impact of estimated glomerular filtration rate on diabetic macular edema[ J]. Int Ophthalmol, 2018, 38(3): 1043-1050. DOI: 10.1007/s10792-017- 0557-8.
52、Man REK, Sasongko MB, Wang JJ, et al. The association of estimated glomerular filtration rate with diabetic retinopathy and macular edema[ J]. Invest Ophthalmol Vis Sci, 2015, 56(8): 4810-4816. DOI: 10.1167/iovs.15-16987.
53、Ong SS, Thomas AS, Fekrat S. Improvement of recalcitrant diabetic macular edema after peritoneal dialysis[ J]. Ophthalmic Surg Lasers Imaging Retina, 2017, 48(10): 834-837. DOI: 10.3928/23258160- 20170928-09.
54、Theodossiadis PG, Theodoropoulou S, Neamonitou G, et al. Hemodialysis-induced alterations in macular thickness measured by optical coherence tomography in diabetic patients with endstage renal disease[ J]. Ophthalmologica, 2012, 227(2): 90-94. DOI: 10.1159/000331321.
55、Matsuo T. Disappearance of diabetic macular hard exudates after hemodialysis introduction[ J]. Acta Med Okayama, 2006, 60(3): 201- 205. DOI: 10.18926/AMO/30746.
56、Pescosolido N, Campagna O, Barbato A. Diabetic retinopathy and pregnancy[ J]. Int Ophthalmol, 2014, 34(4): 989-997. DOI: 10.1007/ s10792-014-9906-z.
57、Pappot N, Do NC, Vestgaard M, et al. Prevalence and severity of diabetic retinopathy in pregnant women with diabetes-time to individualize photo screening frequency[ J]. Diabet Med, 2022, 39(7): e14819. DOI: 10.1111/dme.14819.
58、Larinkari J, Laatikainen L, Ranta T, et al. Metabolic control and serum hormone levels in relation to retinopathy in diabetic pregnancy[ J]. Diabetologia, 1982, 22(5): 327-332. DOI: 10.1007/BF00253576.
59、Sheth BP. Does pregnancy accelerate the rate of progression of diabetic retinopathy : an update[ J]. Curr Diab Rep, 2008, 8(4): 270-273. DOI: 10.1007/s11892-008-0048-4.
60、Nesto RW, Bell D, Bonow RO, et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. October 7, 2003[ J]. Circulation, 2003, 108(23): 2941-2948. DOI:10.1161/01.CIR.0000103683.99399.7E.
61、K a r a l l i e d d e J, B u c k i n g h a m R E . T h i a z o l i d i n e d i o n e s a n d their fluid-related adverse effects: facts, fiction and putative management strategies[ J]. Drug Saf, 2007, 30(9): 741-753. DOI: 10.2165/00002018-200730090-00002.
62、Idris I, Warren G, Donnelly R. Association between thiazolidinedione treatment and risk of macular edema among patients with type 2 diabetes[ J]. Arch Intern Med, 2012, 172(13): 1005-1011. DOI: 10.1001/archinternmed.2012.1938.
63、Fong DS, Contreras R. Glitazone use associated with diabetic macular edema[ J]. Am J Ophthalmol, 2009, 147(4): 583-586.e1. DOI: 10.1016/j.ajo.2008.10.016.
64、Ryan EH Jr, Han DP, Ramsay RC, et al. Diabetic macular edema associated with glitazone use[ J]. Retina, 2006, 26(5): 562-570. DOI: 10.1097/00006982-200605000-00011.
65、Ambrosius WT, Danis RP, Goff DC Jr, et al. Lack of association between thiazolidinediones and macular edema in type 2 diabetes: the ACCORD eye substudy[ J]. Arch Ophthalmol, 2010, 128(3): 312-318. DOI: 10.1001/archophthalmol.2009.310.
66、Gower EW, Lovato JF, Ambrosius WT, et al. Lack of longitudinal association between thiazolidinediones and incidence and progression of diabetic eye disease: the ACCORD eye study[ J]. Am J Ophthalmol, 2018, 187: 138-147. DOI: 10.1016/j.ajo.2017.12.007.
67、Phu A, Banghart M, Bahrainian M, et al. Dipeptidyl peptidase 4 inhibitors, sodium glucose cotransporter 2 inhibitors, and glucagon-like peptide 1 receptor agonists do not worsen diabetic macular edema[ J]. J Diabetes Complications, 2024, 38(8): 108808. DOI: 10.1016/ j.jdiacomp.2024.108808.
68、Wai KM, Mishra K, Koo E, et al. Impact of GLP-1 agonists and SGLT-2 inhibitors on diabetic retinopathy progression: an aggregated electronic health record data study[ J]. Am J Ophthalmol, 2024, 265: 39-47. DOI: 10.1016/j.ajo.2024.04.010.
69、Kapoor I, Sarvepalli SM, D’Alessio D, et al. GLP-1 receptor agonists and diabetic retinopathy: a meta-analysis of randomized clinical trials[ J]. Surv Ophthalmol, 2023, 68(6): 1071-1083. DOI: 10.1016/ j.survophthal.2023.07.002.
70、Sha W, Wen S, Chen L, et al. The role of SGLT2 inhibitor on the treatment of diabetic retinopathy[ J]. J Diabetes Res, 2020, 2020: 8867875. DOI: 10.1155/2020/8867875.
71、Hernández C, Fonollosa A, García-Ramírez M, et al. Erythropoietin is expressed in the human retina and it is highly elevated in the vitreous fluid of patients with diabetic macular edema[ J]. Diabetes Care, 2006, 29(9): 2028-2033. DOI: 10.2337/dc06-0556.
72、Li Y, Yu Y, VanderBeek BL. Anaemia and the risk of progression from non-proliferative diabetic retinopathy to vision threatening diabetic retinopathy[ J]. Eye, 2020, 34(5): 934-941. DOI: 10.1038/s41433- 019-0617-6.
73、Friedman EA, L'Esperance FA, Brown CD, et al. Treating azotemiainduced anemia with erythropoietin improves diabetic eye disease[ J]. Kidney Int Suppl, 2003(87): S57-S63. DOI: 10.1046/j.1523-1755.64. s87.9.x.
74、Entezari M, Flavarjani ZK , Ramezani A, et al. Combination of intravitreal bevacizumab and erythropoietin versus intravitreal bevacizumab alone for refractor y diabetic macular edema: a randomized double-blind clinical trial[ J]. Graefes Arch Clin Exp Ophthalmol, 2019, 257(11): 2375-2380. DOI: 10.1007/s00417-019- 04383-2.
75、Ajoy Mohan VK, Nithyanandam S, Idiculla J. Microalbuminuria and low hemoglobin as risk factors for the occurrence and increasing severity of diabetic retinopathy[ J]. Indian J Ophthalmol, 2011, 59(3): 207-210. DOI: 10.4103/0301-4738.81029.
76、Vié AL, Kodjikian L, Agard E, et al. Evaluation of obstructive sleep apnea syndrome as a risk factor for diabetic macular edema in patients with type ii diabetes[ J]. Retina, 2019, 39(2): 274-280. DOI: 10.1097/ IAE.0000000000001954.
77、Chiang JF, Sun MH, Chen KJ, et al. Association between obstructive sleep apnea and diabetic macular edema in patients with type 2 diabetes[ J]. Am J Ophthalmol, 2021, 226: 217-225. DOI: 10.1016/ j.ajo.2021.01.022.
78、Yang Y, Somani S. Impact of obstructive sleep apnea on the ex pression of inf lammator y mediators in diabetic macular edema[ J]. Eur J Ophthalmol, 2023, 33(1): 415-420. DOI: 10.1177/11206721221099247.
79、Ma so n R H , West SD, K i i re C A , et a l . Hig h p reva l en ce o f sleep disordered breathing in patients with diabetic macular edema[ J]. Retina, 2012, 32(9): 1791-1798. DOI: 10.1097/ IAE.0b013e318259568b.
80、Awata T, Kurihara S, Takata N, et al. Functional VEGF C-634G polymorphism is associated with development of diabetic macular edema and correlated with macular retinal thickness in type 2 diabetes[ J]. Biochem Biophys Res Commun, 2005, 333(3): 679-685. DOI: 10.1016/j.bbrc.2005.05.167.
81、El-Shazly SF, El-Bradey MH, Tameesh MK. Vascular endothelial growth factor gene polymorphism prevalence in patients with diabetic macular oedema and its correlation with anti-vascular endothelial growth factor treatment outcomes[ J]. Clin Exp Ophthalmol, 2014, 42(4): 369-378. DOI: 10.1111/ceo.12182.
82、Tetikoğlu M, Yüksel Z, Aktas S, et al. VEGF-A gene polymorphisms and responses to intravitreal ranibizumab treatment in patients with diabetic macular edema[ J]. Int Ophthalmol, 2018, 38(6): 2381-2388.DOI: 10.1007/s10792-017-0738-5.
83、Nakao S, Hafezi-Moghadam A , Ishibashi T. Lymphatics and lymphangiogenesis in the eye[ J]. J Ophthalmol, 2012, 2012: 783163. DOI: 10.1155/2012/783163.
84、Witmer AN, Blaauwgeers HG, Weich HA, et al. Altered expression patterns of VEGF receptors in human diabetic retina and in experimental VEGF-induced retinopathy in monkey[ J]. Invest Ophthalmol Vis Sci, 2002, 43(3): 849-857.
85、Kaidonis G, Burdon KP, Gillies MC, et al. Common sequence variation in the VEGFC gene is associated with diabetic retinopathy and diabetic macular edema[ J]. Ophthalmology, 2015, 122(9): 1828-1836. DOI: 10.1016/j.ophtha.2015.05.004.
86、Santos A, Salguero ML, Gurrola C, et al. The epsilon4 allele of apolipoprotein E gene is a potential risk factor for the severity of macular edema in type 2 diabetic Mexican patients[ J]. Ophthalmic Genet, 2002, 23(1): 13-19. DOI: 10.1076/opge.23.1.13.2203.
87、Masuda T, Shimazawa M, Hashimoto Y, et al. Apolipoprotein E2 and E3, but not E4, promote retinal pathologic neovascularization[ J]. Invest Ophthalmol Vis Sci, 2017, 58(2): 1208-1217. DOI: 10.1167/ iovs.16-20539.
88、Pautz A, Li H, Kleinert H. Regulation of NOS expression in vascular diseases[ J]. Front Biosci (Landmark Ed), 2021, 26(5): 85-101. DOI: 10.52586/4926.
89、Awata T, Neda T, Iizuk a H, et al. Endothelial nitr ic ox ide synthase gene is associated with diabetic macular edema in type 2 diabetes[ J]. Diabetes Care, 2004, 27(9): 2184-2190. DOI: 10.2337/ diacare.27.9.2184.
90、Candas D, Li JJ. MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx[ J]. Antioxid Redox Signal, 2014, 20(10): 1599-1617. DOI: 10.1089/ars.2013.5305.
91、Lee SJ, Choi MG. Association of manganese superoxide dismutase gene polymorphism (V16A) with diabetic macular edema in Korean type 2 diabetic patients[ J]. Metabolism, 2006, 55(12): 1681-1688. DOI: 10.1016/j.metabol.2006.08.011.
92、Abhar y S, Burdon KP, Casson R J, et al. Association between erythropoietin gene polymorphisms and diabetic retinopathy[ J]. Arch Ophthalmol, 2010, 128(1): 102-106. DOI: 10.1001/ archophthalmol.2009.355.
93、Iizuka H, Awata T, Osaki M, et al. Promoter polymorphisms of the pigment epithelium-derived factor gene are associated with diabetic retinopathy[ J]. Biochem Biophys Res Commun, 2007, 361(2): 421- 426. DOI: 10.1016/j.bbrc.2007.07.025.
94、Mi W, Xia Y, Bian Y. Meta-analysis of the association between aldose reductase gene (CA)n microsatellite variants and risk of diabetic retinopathy[ J]. Exp Ther Med, 2019, 18(6): 4499-4509. DOI: 10.3892/etm.2019.8086.
95、Kaidonis G, Gillies MC, Abhar y S, et al. A single-nucleotide polymorphism in the microRNA-146a gene is associated with diabetic nephropathy and sight-threatening diabetic retinopathy in Caucasian patients[ J]. Acta Diabetol, 2016, 53(4): 643-650. DOI: 10.1007/ s00592-016-0850-4.
96、Acan D, Calan M, Er D, et al. The prevalence and systemic risk factors of diabetic macular edema: a cross-sectional study from Turkey[ J]. BMC Ophthalmol, 2018, 18(1): 91. DOI: 10.1186/s12886-018-0753-y.
97、Maugeri G, D’Amico AG, Rasà DM, et al. Nicotine promotes blood retinal barrier damage in a model of human diabetic macular edema[ J]. Toxicol In Vitro, 2017, 44: 182-189. DOI: 10.1016/j.tiv.2017.07.003.
98、Hu Y, Zhou C, Shi Y, et al. A higher serum calcium level is an independent risk factor for vision-threatening diabetic retinopathy in patients with type 2 diabetes: cross-sectional and longitudinal analyses[ J]. Endocr Pract, 2021, 27(8): 826-833. DOI: 10.1016/ j.eprac.2021.05.003.
99、Kim SJ, Grzybowski A. Re: Chu etal.: risk factors and incidence of macular edema after cataract surgery: a database study of 81 984 eyes (Ophthalmology 2016;123: 316-323)[ J]. Ophthalmology, 2017, 124(2): e16-e17. DOI: 10.1016/j.ophtha.2016.04.061.
100、Chen XY, Song WJ, Cai HY, et al. Macular edema after cataract surgery in diabetic eyes evaluated by optical coherence tomography[ J]. Int J Ophthalmol, 2016, 9(1): 81-85. DOI: 10.18240/ijo.2016.01.14.
101、Diabetic Retinopathy Clinical Research Network Authors/Writing Committee, Baker CW, Almukhtar T, et al. Macular edema after cataract surgery in eyes without preoperative central-involved diabetic macular edema[ J]. JAMA Ophthalmol, 2013, 131(7): 870-879. DOI: 10.1001/ jamaophthalmol.2013.2313.
102、Bek T, Tilma K, la Cour M. The risk for developing vision-threatening retinopathy after cataract surgery in diabetic patients depends on the postoperative follow-up time[ J]. Acta Ophthalmol, 2022, 100(3): e719-e725. DOI: 10.1111/aos.14992.
103、Patel JI, Hykin PG, Cree IA. Diabetic cataract removal: postoperative progression of maculopathy: growth factor and clinical analysis[ J]. Br J Ophthalmol, 2006, 90(6): 697-701. DOI: 10.1136/bjo.2005.087403.
104、Hartnett ME, Tinkham N, Paynter L, et al. Aqueous vascular endothelial growth factor as a predictor of macular thickening following cataract surgery in patients with diabetes mellitus[ J]. Am J Ophthalmol, 2009, 148(6): 895-901.e1. DOI: 10.1016/j.ajo.2009.07.014.
105、Lim LL, Morrison JL, Constantinou M, et al. Diabetic Macular Edema at the time of Cataract Surgery trial: a prospective, randomized clinical trial of intravitreous bevacizumab versus triamcinolone in patients with diabetic macular oedema at the time of cataract surgery - preliminary 6 month results[ J]. Clin Exp Ophthalmol, 2016, 44(4): 233-242. DOI: 10.1111/ceo.12720.
106、Panozzo GA, Gusson E, Panozzo G, et al. Dexamethasone intravitreal implant at the time of cataract surgery in eyes with diabetic macular edema[ J]. Eur J Ophthalmol, 2017, 27(4): 433-437. DOI: 10.5301/ ejo.5000920.
107、Starr MR , Mahr MA , Smith WM, et al. Outcomes of patients with active diabetic macular edema at the time of cataract surgery managed with intravitreal anti-vascular endothelial growth factor injections[ J]. Am J Ophthalmol, 2021, 229: 194-199. DOI: 10.1016/ j.ajo.2021.04.002.
108、Behera UC, Das T, Sivaprasad S, et al. Is immediate treatment necessary for diabetic macular edema after pars Plana vitrectomy for tractional complications of proliferative diabetic retinopathy?[ J]. Int Ophthalmol, 2021, 41(11): 3607-3614. DOI: 10.1007/s10792-021-01923-w.
109、Flaxel CJ, Adelman RA, Bailey ST, et al. Diabetic retinopathy preferred practice pattern®[ J]. Ophthalmology, 2020, 127(1): P66-P145. DOI: 10.1016/j.ophtha.2019.09.025.
110、Wolbarsht ML, Landers MB 3rd. The rationale of photocoagulation therapy for proliferative diabetic retinopathy: a review and a model[ J]. Ophthalmic Surg, 1980, 11(4): 235-245.
111、Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders[ J]. N Engl J Med, 1994, 331(22): 1480-1487. DOI: 10.1056/NEJM199412013312203.
112、Larsson LI, Nuija E. Increased permeability of the blood-aqueous barrier after panretinal photocoagulation for proliferative diabetic retinopathy[ J]. Acta Ophthalmol Scand, 2001, 79(4): 414-416. DOI: 10.1034/j.1600-0420.2001.079004414.x.
113、Writing Committee for the Diabetic Retinopathy Clinical Research Network, Gross JG, Glassman AR, et al. Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial[ J]. JAMA, 2015, 314(20): 2137-2146. DOI: 10.1001/jama.2015.15217.
114、Gross JG, Glassman AR, Liu D, et al. Five-year outcomes of panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial[ J]. JAMA Ophthalmol, 2018, 136(10): 1138-1148. DOI: 10.1001/jamaophthalmol.2018.3255.
115、Bressler SB, Beaulieu W T, Glassman A R , et al. Panretinal photocoagulation versus ranibizumab for proliferative diabetic retinopathy: factors associated with vision and edema outcomes[ J]. Ophthalmology, 2018, 125(11): 1776-1783. DOI: 10.1016/ j.ophtha.2018.04.039.
116、Kume A, Kashiwagi K. Systemic and ocular diseases associated with the development of diabetic macular edema among Japanese patients with diabetes mellitus[ J]. BMC Ophthalmol, 2020, 20(1): 309. DOI: 10.1186/s12886-020-01578-8.
117、Kolar P. Risk factors for central and branch retinal vein occlusion: a meta-analysis of published clinical data[ J]. J Ophthalmol, 2014, 2014: 724780. DOI: 10.1155/2014/724780.
118、Wang Y, Wu S, Wen F, et al. Diabetes mellitus as a risk factor for retinal vein occlusion: a meta-analysis[ J]. Medicine, 2020, 99(9): e19319. DOI: 10.1097/MD.0000000000019319.
119、Shibuya M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis[ J]. J Biochem Mol Biol, 2006, 39(5): 469-478. DOI: 10.5483/bmbrep.2006.39.5.469.
120、Selvaraj SK, Giri RK, Perelman N, et al. Mechanism of monocyte activation and expression of proinflammatory cytochemokines by placenta growth factor[ J]. Blood, 2003, 102(4): 1515-1524. DOI: 10.1182/blood-2002-11-3423.
121、Marumo T, Schini-Kerth VB, Fisslthaler B, et al. Platelet-derived growth factor-stimulated superoxide anion production modulates activation of transcription factor NF-kappaB and expression of monocyte chemoattractant protein 1 in human aortic smooth muscle cells[ J]. Circulation, 1997, 96(7): 2361-2367. DOI: 10.1161/01.cir.96.7.2361.
122、Minaker SA, Mason RH, Lahaie Luna G, et al. Changes in aqueous and vitreous inflammatory cytokine levels in diabetic macular oedema: a systematic review and meta-analysis[ J]. Acta Ophthalmol, 2022, 100(1): e53-e70. DOI: 10.1111/aos.14891.
123、Abraham JR, Wykoff CC, Arepalli S, et al. Aqueous cytokine expression and higher order OCT biomarkers: assessment of the anatomicbiologic bridge in the IMAGINE DME study[ J]. Am J Ophthalmol, 2021, 222: 328-339. DOI: 10.1016/j.ajo.2020.08.047.
124、Shimura M, Yasuda K, Motohashi R, et al. Aqueous cytokine and growth factor levels indicate response to ranibizumab for diabetic macular oedema[ J]. Br J Ophthalmol, 2017, 101(11): 1518-1523. DOI: 10.1136/bjophthalmol-2016-309953.
125、Figueras-Roca M, Sala-Puigdollers A, Alforja S, et al. Aqueous humour cytokine changes with intravitreal dexamethasone implant injection for diabetic macular edema[ J]. Ocul Immunol Inflamm, 2019, 27(8): 1203-1210. DOI: 10.1080/09273948.2019.1636095.
126、Qin YJ, Zhang YL, Zhang YQ, et al. Elevated level of uric acid, but not glucose, in aqueous humor as a risk factor for diabetic macular edema in patients with type 2 diabetes[ J]. Retina, 2022, 42(6): 1121-1129. DOI: 10.1097/IAE.0000000000003424.

相关文章