2. 国家自然科学基金创新研究群体项目(81721003)。This work was supported by the Key Project of Chinese National Programs for Fundamental Research and Development (973 Program
3. 2015CB964603) and Science Fund for Creative Research Groups of the National Natural Science Foundation (81721003), China.
4. 国家重点基础研究发展计划 (973 计划 ) 项目 (2015CB964603);国家自然科学基金创新研究群体项目 (81721003)。This work was supported by the Key Project of Chinese National Programs for Fundamental Research and Development (973 Program; 2015CB964603) and Science Fund for Creative Research Groups of the National Natural Science Foundation (81721003), China
参考文献
1. Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010[J]. Br J Ophthalmol, 2012, 96(5): 614-618.
2. Tan DT, Dart JK, Holland EJ, et al. Corneal transplantation[J]. Lancet, 2012, 379(9827): 1749-1761.
3. Burton MJ, Ramke J, Marques AP, et al. The Lancet Global Health Commission on Global Eye Health: vision beyond 2020[J]. Lancet Glob Health, 2021, 9(4): e489-e551.
4. Bothun ED, Cleveland J, Lynn MJ, et al. One-year strabismus outcomes in the Infant Aphakia Treatment Study[J]. Ophthalmology, 2013, 120(6): 1227-1231.
5. Infant Aphakia Treatment Study Group, Lambert SR, Buckley EG, et al. A randomized clinical trial comparing contact lens with intraocular lens correction of monocular aphakia during infancy: grating acuity and adverse events at age 1 year[J]. Arch Ophthalmol, 2010, 128(7): 810-818.
6. Jin ZB, Gao ML, Deng WL, et al. Stemming retinal regeneration with pluripotent stem cells[J]. Prog Retin Eye Res, 2019, 69: 38-56.
8. Davis BM, Crawley L, Pahlitzsch M, et al. Glaucoma: the retina and beyond[J]. Acta Neuropathol, 2016, 132(6): 807-826.
9. Wong TY, Cheung CM, Larsen M, et al. Diabetic retinopathy[J]. Nat Rev Dis Primers, 2016, 2: 16012.
10. Manafi N, Shokri F, Achberger K, et al. Organoids and organ chips in ophthalmology[J]. Ocul Surf, 2021, 19: 1-15.
11. Stern JH, Tian Y, Funderburgh J, et al. Regenerating Eye Tissues to Preserve and Restore Vision[J]. Cell Stem Cell, 2018, 22(6): 834-849.
12. Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies[J]. Science, 2014, 345(6194): 1247125.
13. Holloway EM, Capeling MM, Spence JR. Biologically inspired approaches to enhance human organoid complexity[J]. Development, 2019, 146(8): dev166173.
14. Muthuswamy SK. Bringing together the organoid field: from early beginnings to the road ahead[J]. Development, 2017, 144(6): 963-967.
15. Michalopoulos G, Pitot HC. Primary culture of parenchymal liver cells on collagen membranes. Morphological and biochemical observations[J]. Exp Cell Res, 1975, 94(1): 70-78.
16. Eiraku M, Watanabe K, Matsuo-Takasaki M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals[J]. Cell Stem Cell, 2008, 3(5): 519-532.
17. Rock JR, Onaitis MW, Rawlins EL, et al. Basal cells as stem cells of the mouse trachea and human airway epithelium[J]. Proc Natl Acad Sci U S A, 2009, 106(31): 12771-12775.
18. Sakaguchi H, Kadoshima T, Soen M, et al. Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue[J]. Nat Commun, 2015, 6: 8896.
19. Clevers H. Modeling Development and Disease with Organoids[J]. Cell, 2016, 165(7): 1586-1597.
20. Artegiani B, Clevers H. Use and application of 3D-organoid technology[J]. Hum Mol Genet, 2018, 27(R2): R99-R107.
21. Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research[J]. Nat Rev Genet, 2018, 19(11): 671-687.
22. Cvekl A, Tamm ER. Anterior eye development and ocular mesenchyme: new insights from mouse models and human diseases[J]. Bioessays, 2004, 26(4): 374-386.
23. Graw J. Eye development[J]. Curr Top Dev Biol, 2010, 90: 343-386.
24. Jackson CJ, Myklebust Erno IT, Ringstad H, et al. Simple limbal epithelial transplantation: current status and future perspectives[J]. Stem Cells Transl Med, 2020, 9(3): 316-327.
25. Pellegrini G, Golisano O, Paterna P, et al. Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface[J]. J Cell Biol, 1999, 145(4): 769-782.
27. Nosrati H, Alizadeh Z, Nosrati A, et al. Stem cell-based therapeutic strategies for corneal epithelium regeneration[J]. Tissue Cell, 2021, 68: 101470.
28. Nurkovic JS, Vojinovic R, Dolicanin Z. Corneal stem cells as a source of regenerative cell-based therapy[J]. Stem Cells Int, 2020, 2020: 8813447.
29. Ouyang H, Xue Y, Lin Y, et al. WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis[J]. Nature, 2014, 511(7509): 358-361.
30. Hayashi R, Ishikawa Y, Sasamoto Y, et al. Co-ordinated ocular development from human iPS cells and recovery of corneal function[J]. Nature, 2016, 531(7594): 376-380.
31. Shibata S, Hayashi R, Okubo T, et al. Selective laminin-directed differentiation of human induced pluripotent stem cells into distinct ocular lineages[J]. Cell Rep, 2018, 25(6): 1668-1679.e1665.
32. Minami Y, Sugihara H, Oono S. Reconstruction of cornea in three-dimensional collagen gel matrix culture[J]. Invest Ophthalmol Vis Sci, 1993, 34(7): 2316-2324.
33. Germain L, Auger FA, Grandbois E, et al. Reconstructed human cornea produced in vitro by tissue engineering[J]. Pathobiology, 1999, 67(3): 140-147.
34. Griffith M, Osborne R, Munger R, et al. Functional human corneal equivalents constructed from cell lines[J]. Science, 1999, 286(5447): 2169-2172.
35. Foster JW, Wahlin K, Adams SM, et al. Cornea organoids from human induced pluripotent stem cells[J]. Sci Rep, 2017, 7: 41286.
36. Susaimanickam PJ, Maddileti S, Pulimamidi VK, et al. Generating minicorneal organoids from human induced pluripotent stem cells[J]. Development, 2017, 144(13): 2338-2351.
37. Rama P, Matuska S, Paganoni G, et al. Limbal stem-cell therapy and long-term corneal regeneration[J]. N Engl J Med, 2010, 363(2): 147-155.
38. Kolli S, Ahmad S, Lako M, et al. Successful clinical implementation of corneal epithelial stem cell therapy for treatment of unilateral limbal stem cell deficiency[J]. Stem Cells, 2010, 28(3): 597-610.
39. Zakaria N, Possemiers T, Dhubhghaill SN, et al. Results of a phase I/II clinical trial: standardized, non-xenogenic, cultivated limbal stem cell transplantation[J]. J Transl Med, 2014, 12: 58.
40. Tsai RJ, Li LM, Chen JK. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells[J]. N Engl J Med, 2000, 343(2): 86-93.
41. Lopez-Garcia JS, Rivas Jara L, Garcia-Lozano I, et al. Histopathologic limbus evolution after alkaline burns[J]. Cornea, 2007, 26(9): 1043-1048.
42. Ting DSJ, Peh GSL, Adnan K, et al. Translational and regulatory challenges of corneal endothelial cell therapy: a global perspective[J/OL]. Tissue Eng Part B Rev, 2021, Epub ahead of print.
43. Bennet D, Estlack Z, Reid T, et al. A microengineered human corneal epithelium-on-a-chip for eye drops mass transport evaluation[J]. Lab Chip, 2018, 18(11): 1539-1551.
44. Seo J, Byun WY, Alisafaei F, et al. Multiscale reverse engineering of the human ocular surface[J]. Nat Med, 2019, 25(8): 1310-1318.
45. Cvekl A, Ashery-Padan R. The cellular and molecular mechanisms of vertebrate lens development[J]. Development, 2014, 141(23): 4432-4447.
46. Ogino H, Ochi H, Reza HM, et al. Transcription factors involved in lens development from the preplacodal ectoderm[J]. Dev Biol, 2012, 363(2): 333-347.
47. Huang FL, Russell P, Kuwabara T. Fine structure of lentoid bodies derived from normal and cataractous mouse lenses[J]. Exp Eye Res, 1980, 31(5): 535-541.
48. Yang C, Yang Y, Brennan L, et al. Efficient generation of lens progenitor cells and lentoid bodies from human embryonic stem cells in chemically defined conditions[J]. FASEB J, 2010, 24(9): 3274-3283.
49. Fu Q, Qin Z, Jin X, et al. Generation of functional lentoid bodies from human induced pluripotent stem cells derived from urinary cells[J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 517-527.
50. Murphy P, Kabir MH, Srivastava T, et al. Light-focusing human micro-lenses generated from pluripotent stem cells model lens development and drug-induced cataract in vitro[J]. Development, 2018, 145(1): dev155838.
51. Han C, Li J, Wang C, et al. Wnt5a contributes to the differentiation of human embryonic stem cells into lentoid bodies through the noncanonical Wnt/JNK signaling pathway[J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3449-3460.
52. Fu Q, Qin Z, Zhang L, et al. A new long noncoding RNA ALB regulates autophagy by enhancing the transformation of LC3BI to LC3BII during human lens development[J]. Mol Ther Nucleic Acids, 2017, 9: 207-217.
53. Qin Z, Zhang L, Lyu D, et al. Opacification of lentoid bodies derived from human induced pluripotent stem cells is accelerated by hydrogen peroxide and involves protein aggregation[J]. J Cell Physiol, 2019, 234(12): 23750-23762.
54. Lin H, Ouyang H, Zhu J, et al. Lens regeneration using endogenous stem cells with gain of visual function[J]. Nature, 2016, 531(7594): 323-328.
55. Marquardt T. Transcriptional control of neuronal diversification in the retina[J]. Prog Retin Eye Res, 2003, 22(5): 567-577.
56. Heavner W, Pevny L. Eye development and retinogenesis[J]. Cold Spring Harb Perspect Biol, 2012, 4(12): a008391.
57. Jin K, Xiang M. Transitional Progenitors during Vertebrate Retinogenesis[J]. Mol Neurobiol, 2017, 54(5): 3565-3576.
58. Wan J, Goldman D. Retina regeneration in zebrafish[J]. Curr Opin Genet Dev, 2016, 40: 41-47.
59. Goldman D. Muller glial cell reprogramming and retina regeneration[J]. Nat Rev Neurosci, 2014, 15(7): 431-442.
60. Eiraku M, Sasai Y. Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues[J]. Nat Protoc, 2011, 7(1): 69-79.
61. Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture[J]. Nature, 2011, 472(7341): 51-56.
62. Nakano T, Ando S, Takata N, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs[J]. Cell Stem Cell, 2012, 10(6): 771-785.
63. Zhong X, Gutierrez C, Xue T, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs[J]. Nat Commun, 2014, 5: 4047.
64. Lowe A, Harris R, Bhansali P, et al. Intercellular adhesion-dependent cell survival and rock-regulated actomyosin-driven forces mediate self-formation of a retinal organoid[J]. Stem Cell Reports, 2016, 6(5): 743-756.
65. Wahlin KJ, Maruotti JA, Sripathi SR, et al. Photoreceptor outer segment-like structures in long-term 3D retinas from human pluripotent stem cells[J]. Sci Rep, 2017, 7(1): 766.
66. Kuwahara A, Ozone C, Nakano T, et al. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue[J]. Nat Commun, 2015, 6: 6286.
67. Regent F, Chen HY, Kelley RA, et al. A simple and efficient method for generating human retinal organoids[J]. Mol Vis, 2020, 26: 97-105.
68. Reichman S, Slembrouck A, Gagliardi G, et al. Generation of storable retinal organoids and retinal pigmented epithelium from adherent human iPS cells in Xeno-free and feeder-free conditions[J]. Stem Cells, 2017, 35(5): 1176-1188.
69. Capowski EE, Samimi K, Mayerl SJ, et al. Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines[J]. Development, 2019, 146(1): dev171686.
70. Kim S, Lowe A, Dharmat R, et al. Generation, transcriptome profiling, and functional validation of cone-rich human retinal organoids[J]. Proc Natl Acad Sci U S A, 2019, 116(22): 10824-10833.
71. Cowan CS, Renner M, De Gennaro M, et al. Cell types of the human retina and its organoids at single-cell resolution[J]. Cell, 2020, 182(6): 1623-1640 e1634.
72. Achberger K, Probst C, Haderspeck J, et al. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform[J]. Elife, 2019, 8: e46188.
73. Volkner M, Zschatzsch M, Rostovskaya M, et al. Retinal organoids from pluripotent stem cells efficiently recapitulate retinogenesis[J]. Stem Cell Reports, 2016, 6(4): 525-538.
74. Takata N, Abbey D, Fiore L, et al. An eye organoid approach identifies Six3 suppression of R-spondin 2 as a critical step in mouse neuroretina differentiation[J]. Cell Rep, 2017, 21(6): 1534-1549.
75. Capowski EE, Simonett JM, Clark EM, et al. Loss of MITF expression during human embryonic stem cell differentiation disrupts retinal pigment epithelium development and optic vesicle cell proliferation[J]. Hum Mol Genet, 2014, 23(23): 6332-6344.
76. Li G, Gao G, Wang P, et al. Generation and characterization of induced pluripotent stem cells and retinal organoids from a Leber's congenital amaurosis patient with novel RPE65 mutations[J]. Front Mol Neurosci, 2019, 12: 212.
77. Quinn PM, Buck TM, Mulder AA, et al. Human iPSC-derived retinas recapitulate the fetal CRB1 CRB2 complex formation and demonstrate that photoreceptors and muller glia are targets of AAV5[J]. Stem Cell Reports, 2019, 12(5): 906-919.
78. Gao ML, Lei XL, Han F, et al. Patient-specific retinal organoids recapitulate disease features of late-onset retinitis pigmentosa[J]. Front Cell Dev Biol, 2020, 8: 128.
79. Saengwimol D, Rojanaporn D, Chaitankar V, et al. A three-dimensional organoid model recapitulates tumorigenic aspects and drug responses of advanced human retinoblastoma[J]. Sci Rep, 2018, 8(1): 15664.
80. Ito SI, Onishi A, Takahashi M. Chemically-induced photoreceptor degeneration and protection in mouse iPSC-derived three-dimensional retinal organoids[J]. Stem Cell Res, 2017, 24: 94-101.
81. Lakowski J, Welby E, Budinger D, et al. Isolation of Human photoreceptor precursors via a cell surface marker panel from stem cell-derived retinal organoids and fetal retinae[J]. Stem Cells, 2018, 36(5): 709-722.
82. Garita-Hernandez M, Lampic M, Chaffiol A, et al. Restoration of visual function by transplantation of optogenetically engineered photoreceptors[J]. Nat Commun, 2019, 10(1): 4524.
83. Zou T, Gao L, Zeng Y, et al. Organoid-derived C-Kit(+)/SSEA4(-) human retinal progenitor cells promote a protective retinal microenvironment during transplantation in rodents[J]. Nat Commun, 2019, 10(1): 1205.
84. Hirayama M, Ogawa M, Oshima M, et al. Functional lacrimal gland regeneration by transplantation of a bioengineered organ germ[J]. Nat Commun, 2013, 4: 2497.
85. Spaniol K, Metzger M, Roth M, et al. Engineering of a secretory active three-dimensional lacrimal gland construct on the basis of decellularized lacrimal gland tissue[J]. Tissue Eng Part A, 2015, 21(19/20): 2605-2617.
86. Lin H, Sun G, He H, et al. Three-dimensional culture of functional adult rabbit lacrimal gland epithelial cells on decellularized scaffold[J]. Tissue Eng Part A, 2016, 22(1/2): 65-74.
87. Gromova A, Voronov DA, Yoshida M, et al. Lacrimal gland repair using progenitor cells[J]. Stem Cells Transl Med, 2017, 6(1): 88-98.
88. Hu Q, Friedrich AM, Johnson LV, et al. Memory in induced pluripotent stem cells: reprogrammed human retinal-pigmented epithelial cells show tendency for spontaneous redifferentiation[J]. Stem Cells, 2010, 28(11): 1981-1991.
89. Wang L, Hiler D, Xu B, et al. Retinal cell type DNA methylation and histone modifications predict reprogramming efficiency and retinogenesis in 3D organoid cultures[J]. Cell Rep, 2018, 22(10): 2601-2614.
90. Hiler D, Chen X, Hazen J, et al. Quantification of retinogenesis in 3D cultures reveals epigenetic memory and higher efficiency in iPSCs derived from rod photoreceptors[J]. Cell Stem Cell, 2015, 17(1): 101-115.