光学相干断层成像技术在帕金森病中的发现及探索
阅读量:5486
DOI:10.3978/j.issn.1000-4432.2021.12.04
发布日期:2021-10-28
作者:
田梅 ,王梁 ,刘亚玲
展开更多 '%20fill='white'%20fill-opacity='0.01'/%3e%3cmask%20id='mask0_3477_29692'%20style='mask-type:luminance'%20maskUnits='userSpaceOnUse'%20x='0'%20y='0'%20width='16'%20height='16'%3e%3crect%20id='&%23232;&%23146;&%23153;&%23231;&%23137;&%23136;_2'%20x='16'%20width='16'%20height='16'%20transform='rotate(90%2016%200)'%20fill='white'/%3e%3c/mask%3e%3cg%20mask='url(%23mask0_3477_29692)'%3e%3cpath%20id='&%23232;&%23183;&%23175;&%23229;&%23190;&%23132;'%20d='M14%205L8%2011L2%205'%20stroke='%23333333'%20stroke-width='1.5'%20stroke-linecap='round'%20stroke-linejoin='round'/%3e%3c/g%3e%3c/g%3e%3c/svg%3e)
关键词
帕金森病
光学相干断层扫描技术
光学相干断层扫描血管成像技术
摘要
帕金森病(Parkinson’s disease,PD)是老年人常见的神经系统退行性疾病,眼部及视觉功能障碍是PD常见的非运动症状之一,进一步影响其生活质量。已有研究表明PD患者视网膜内存在多巴胺浓度的减少以及α突触核蛋白的沉积。目前,PD仍缺乏有效的早期诊断及病情评估工具,光学相干断层扫描及光学相干断层扫描血管成像技术可以显示视网膜各层微细结构及微血管的异常,应用该技术研究者发现PD患者视乳头旁视网膜神经纤维层及黄斑区视网膜的厚度均存在不同程度的变薄,视网膜浅层及深层毛细血管丛的毛细血管密度和复杂性下降。进一步研究者应用该技术在PD临床应用中进行了探索,并发现其可用于检测早期PD中发生的病理变化,反映疾病的病程及严重程度,并且在鉴别诊断中起到一定的作用。总而言之,视网膜相关检测可能成为评估PD患者脑病理严重程度的指标,并且帮助疾病诊断和监测疾病的进展,不过这仍需要大样本、多中心的重复研究以提供更多理论依据。
全文
帕金森病(Parkinson’s disease,PD)是老年人常见的神经系统退行性疾病,以静止性震颤、肌强直、运动迟缓等运动症状为其主要临床表现。此外,PD患者还会出现如焦虑、抑郁等神经、精神症状,便秘、泌尿障碍等自主神经功能障碍,失眠、快速眼动期睡眠行为异常等睡眠障碍,嗅觉减退、疼痛等感觉障碍等非运动症状,进一步影响患者的生活质量。眼部及视觉功能障碍也是PD常见的非运动症状之一,主要包括干眼症状、眼动障碍、角膜感觉障碍、视力下降、色觉、视野、对比敏感度、视觉注意的异常、视幻觉以及视空间功能障碍[1-2]。视网膜受累的PD患者,表现为视网膜内多巴胺浓度的减少及α突触核蛋白的沉积[3-5]。目前,PD作为第二大神经系统退行性疾病,仍缺乏有效的早期诊断及病情评估工具,随着神经眼科学技术的发展,越来越多的技术开始应用于神经系统退行性疾病中,其中光学相干断层成像技术具有实时、高分辨率、非侵入性的特点,可以显示视网膜各层微细结构及微血管的异常,因而研究者应用该项技术在PD患者中进行了一系列的探索,现将其研究结果综述如下。
1 PD视觉损害症状及视网膜病理研究
近期,一项研究[1]利用帕金森病视力障碍问卷(Visual Impairment in Parkinson’s Disease Questionnaire,VIPD-Q)在848例PD患者和250例健康对照者中进行了调查,结果发现:82%的PD患者患有一种或多种眼部症状,而对照组的比例为48%,且PD患者VIPD-Q总得分要高于健康对照组;其次,68%的PD患者日常生活活动受到了其眼部症状的干扰,而在对照组中这一比例为35%。这表明PD患者更容易出现视觉损害症状,并且影响其生活质量。PD患者眼部、视觉功能障碍主要包括干眼症状、眼动障碍、角膜感觉障碍、视力下降、色觉、视野、对比敏感度、视觉注意的异常、视幻觉以及视空间功能障碍,并且可能在PD前驱期就已存在,在出现认知功能障碍后加重[2]。
关于视网膜病理的研究,早在1990年,Harnois等[3]就表明与脑内黑质-纹状体多巴胺能通路相似,PD患者视网膜内多巴胺浓度 发生了下降。随后,Bodis-Wollner等[4]发现在PD患者内层视网膜中存在α-突触核蛋白的沉积,尤以内从状层受累最为严重,这与以往报道的阿尔兹海默氏病、路易体痴呆及高龄人群中的分布不同。同样,Ortu?o-Lizarán等[5]的病理研究数据也表明磷酸化的α-突触核蛋白沉积在PD患者视网膜中,并且与大脑平行受累。Yang等[6-7]的病理研究发现与对照组相比,PD患者的多个脑区出现毛细血管数量变少、长度变短、直径变大,毛细血管网络受损,特别是在黑质、大脑皮层额中回和脑干核团最为明显,并且存在脑灌注不足的现象。由于视网膜血管和脑血管之间具有解剖及生理的同源性,可以推测PD中所伴随的脑内微血管异常可能会扩展到视网膜,从而导致视网膜微血管发生改变[8]。由此可见,视网膜相关检测可能成为评估PD患者脑病理严重程度的指标,并且帮助疾病诊断和监测疾病的进展。
2 光学相干断层成像技术在PD中的发现及探索
近年来,随着神经眼科学的发展,越来越多的眼科技术开始应用于神经系统退行性疾病的检测中。光学相干断层成像技术具有实时、高分辨率、非侵入性的成像特点,包括光学相干断层扫描(optical coherence tomography,OCT)及光学相干断层扫描血管成像(optical coherence tomography angiography,OCTA)这2种技术,其可以快速、重复地显示黄斑区及视乳头(也称视盘)旁视网膜横截面图像,并对其体积、厚度、微血管进行定量分析。由于PD患者存在视觉损害症状,且病理研究证实视网膜的受累,因而促进了该技术在PD患者当中的应用。
2.1 PD患者视网膜结构的改变
最早Inzelberg等[9]应用OCT技术在PD患者中进行了研究,发现与健康对照组相比,PD患者视乳头旁视网膜神经纤维层(peripapillary retinal nerve fiber layer,pRNFL)(即内界膜至神经节细胞层的距离)厚度在下象限变薄,尤以颞下象限变薄最为显著。此后陆续有研究[10-13]发现PD患者在各个象限均存在不同程度的变薄,且随着疾病的进展而进行性变薄[13]。由于各个研究结果所示的pRNFL厚度变薄所在象限并不一致,Huang等[14]便进行了荟萃分析,探讨pRNFL厚度的变薄是否呈现一定的模式,结果显示:在PD患者中,下象限pRNFL变薄的程度大于上象限,颞侧象限变薄的程度大于鼻侧象限;颞上和颞下象限变薄的程度大于鼻上和鼻下象限,推测其可能的原因是PD受累的视网膜神经节细胞(retinal ganglion cell,RGC)主要为P细胞,而P细胞主要位于中央凹旁和颞侧区域[15],且有研究[16]表明正常人群颞象限pRNFL厚度最薄。P细胞主导视敏度(即视力)、色彩辨别、对比敏感度和高空间频率对比敏感度,因此这也同时解释了PD患者为什么会出现视敏度的下降、色觉减退、运动分析能力下降等一系列视觉症状。除pRNFL厚度的变薄外,PD患者黄斑区视网膜的厚度(即内界膜至色素上皮细胞层的距离)也存在异常改变。在OCT技术的测量过程中可将黄斑区分为不同的区域,包括以中央凹为中心直径1 mm、内径3 mm和外径6 mm的环形区域,进一步又将其分为上、下、鼻、颞4个象限,从而计算出不同区域及总体的平均视网膜厚度。一项荟萃分析[12]结果表明:PD患者黄斑中央凹,内环及外环各个象限的厚度均低于健康人群,以内环颞象限及外环上象限最为显著,而且还发现黄斑体积及黄斑神经节细胞复合体(macular ganglion cell complex,mGCC)的厚度(即神经纤维层、神经节细胞层及内从状层的总和)同样低于对照组。此外,另有研究[10-11,13-14,17]则发现PD患者不论是总黄斑厚度、黄斑体积,还是黄斑神经节细胞层和内丛状层(ganglion cell layer and inner plexiform layer,GCIPL)的厚度均低于对照组,并且在随访时进一步下降。
2.2 PD患者视网膜微血管的改变
第1个分析PD视网膜血管变化的研究[18]使用了眼底荧光素血管造影,结果表明PD患者的中央凹无血管区(foveal avascular zone,FAZ)较对照组相比减少,这一研究结果与Murueta-Goyena等[19]应用OCTA技术在PD患者中的发现类似:与对照组相比,PD患者的FAZ在视网膜浅层毛细血管丛(superficial retinal capillary plexus,SCP)及深层毛细血管丛(deep retinal capillary plexus,DCP)中的面积明显变小。与此同时,PD患者FAZ面积的减少伴随着中央凹区微血管参数的增加,如血管骨架密度和灌注密度,这反映了该区域血管复杂性和异质性的增加。然而也有研究未发现上述异常改变[20]或结果显示中央凹血管灌注密度的减少[21]。除FAZ的异常改变外,黄斑旁微血管的改变也在多项研究中证实[22-26]。应用OCTA技术,Kwapong等[22]表明早期PD患者在各个象限和整个环形区(以中央凹为中心,直径为2.5 mm的区域,排除FAZ)中均显示出SCP灌注密度的降低,且整个环形区SCP灌注密度的降低与GCIPL厚度呈正相关,提示微血管异常,尤其是SCP异常可能与神经变性有关。另外一项描述PD视网膜毛细血管复杂性的研究[23]则发现PD患者SCP和DCP均出现毛细血管骨架密度,灌注密度和复杂性的下降,并且SCP的毛细血管复杂性与GCIPL的厚度呈负相关[23]。
2.3 在PD早期诊断中的探索
PD通常起病隐匿,当患者出现临床典型运动症状时,多巴胺能神经元已丢失50%以上,如若能早期诊断,便能早期治疗,为患者争取更大的改善空间。但目前为止,诊断仍依赖于临床评估和对多巴胺能药物替代治疗的反应。黄斑区RGC高度聚集,有8~10层的RGC胞体,因此在PD早期更容易受累[27]。Lee等[28]调查了前驱PD队列中的视网膜变化及其与神经变性标志物之间的关系,发现mGCC的厚度与嗅觉功能以及纹状体多巴胺转运蛋白的利用率有关。从而推测mGCC厚度变薄可能是前驱PD神经变性的一个标志物。同样,在49名早期、未经药物治疗的PD患者中,Ahn等[29]发现在黄斑区2.22毫米范围内下象限和颞象限的视网膜内层厚度变薄,尤以下象限的GCIPL厚度变薄最为显著,且与黑质中多巴胺转运体的丢失有关。Zhang等[25-26]应用了OCTA技术的研究均表明与视网膜结构变薄相比,SCP及DCP血管密度降低可能出现得更早,具有更强的诊断能力,ROC分析也显示SCP血管密度相较DCP血管密度和视网膜结构厚度,对早期PD的诊断能力更强,这也进一步证明视网膜成像技术可用于检测早期PD中发生的病理变化,然而这需要更多的研究来证实。
2.4 在PD病情评估中的探索
随着PD病程的延长及疾病严重程度的加重,不仅会出现黑质多巴胺能神经元进行性凋亡,其视网膜厚度也在逐渐变薄。在一项针对129名PD患者的研究中,研究人员[30]发现病程长的PD患者其内层视网膜厚度更薄,且神经节细胞层的厚度与疾病的病程和严重程度呈负相关。赵颖等[27,31]发现与轻中度PD组相比,重度PD组黄斑各区视网膜厚度变薄,黄斑体积变小,平均pRNFL厚度,颞象限上方、下方pRNFL厚度,下象限鼻侧、颞侧pRNFL厚度均变薄,且随着PD程度的加重,颞象限上方、下方pRNFL变薄最为显著。同样Ahn等[24]发现在黄斑区2.22 mm范围内下象限和颞象限视网膜内层厚度与HY分期呈负相关。
2.5 在PD鉴别诊断中的探索
在疾病早期将PD与进行性核上性麻痹(progressive supranuclear palsy,PSP)区分开来可能存在一定的困难。垂直核上性凝视麻痹、固定不稳、眼睑挛缩、睑裂痉挛以及眼睑失用症状在鉴别PD和PSP时可能有所帮助。凝视麻痹可能为PSP最有用的临床诊断症状,而色觉异常在PD中更为常见,并且与多巴胺能系统直接相关[2]。Gulmez Sevim等[32]研究发现:与PD组相比,PSP组上象限pRNFL厚度,黄斑神经节细胞层、内丛状层、内核层的厚度和黄斑体积的减少更为明显。Albrecht等[33]进一步发现通过将外核层/外丛状层临界值设为3.1、内核层厚度限制在46 μm以下,可以鉴别PD和PSP,其特异度为70%,敏感度为96%。方波跳动,扫视缓慢,前庭眼反射减弱以及眼球震颤的存在可能提示多系统萎缩(multiple system atrophy,MSA)的可能。此外,MSA患者很少出现与药物无关的幻觉[2]。研究[15]发现:MSA患者pRNFL厚度变薄的模式与PD存在差异,其上、下及鼻象限变薄更为明显,推测其原因可能为MSA和PD患者的RGC受累模式不同所致,但仍需要更多的研究来予以证实。
2.6 在PD认知功能障碍中的探索
PD认知功能障碍严重影响患者的功能和生活质量,根据疾病的发展阶段分为帕金森病合并轻度认知障碍(mild cognitive impairment in Parkinson’s disease,PD‐MCI)与帕金森病痴呆(Parkinson’s disease with dementia,PDD)。在基线认知正常的PD人群中,1年后PD-MCI的发病率为10%。在5年的随访过程中,39.1%的PD-MCI患者可进展为PDD,27.8%的PD-MCI患者认知功能可恢复正常[34]。而PD患者中PDD的发生率为24~31%,70~80%的PD患者最终会发展为PDD[35]。近年来的一些研究[36-37]表明存在色觉障碍及立体视觉异常等视觉损害表现的PD患者更易发生认知功能障碍,且Mutlu等[38]发现较薄的pRNFL与痴呆症(包括阿尔茨海默病)的患病风险增加有关。因此,研究者应用OCT技术来探讨视网膜结构的改变是否与PD认知功能障碍有关。在国内的研究中,余尔涵等[39]发现PD患者pRNFL厚度变薄,即可能伴随有认知功能损害,且pRNFL厚度、黄斑容积及厚度随认知障碍的严重程度加重而变薄、变小。王芳等[40]则发现PDD组与n-PDD组相比,黄斑区外环颞侧、内环各象限(上、下、鼻、颞)视网膜厚度及颞侧pRNFL厚度差异具有统计学意义,内环上方、内环颞侧厚度对于PDD有较好的诊断价值。在国外的研究中,研究人员发现基线时中央凹旁GCIPL[17]和pRNFL[17,41]厚度较低的PD患者在随访过程中发生认知障碍的风险是增加的。还有研究[42]表明黄斑区GCIPL厚度可以预测PDD的发生风险。Sung等[43]发现PD患者MoCA评分与黄斑区GCIPL厚度变薄显著相关。同样,Moreno-Ramos等[44]的研究表明PD患者pRNFL的厚度越薄,其MMSE和Mattis痴呆症评分量表得分就越低。
2.7 在PD视幻觉中的探索
PD患者视幻觉(visual hallucination,VH)的发生率为22%[45],可出现于疾病的各个阶段。目前有3种可能的产生机制:中枢机制、外周机制以及2种机制相互作用。其中外周机制是指视网膜水平的视觉感知功能障碍导致的VH的产生。Lee等[46]的研究表明:VH,尤其是在那些非痴呆的PD患者中发生的VH,可能与黄斑区RNFL厚度变薄有关,而与总的黄斑厚度和其他视网膜各层的厚度无关。与其不同的是,Visser等[47]的研究表明:PD合并VH的患者与无VH的患者相比,其黄斑区视网膜内层GCIPL的厚度较薄,在校正了年龄、病程、左旋多巴等效日剂量和认知功能后,这种差异依然存在。Marques等[48]则发现中央凹旁3 mm区域总视网膜厚度在两组中的差异有统计学意义。这些研究结果均支持了外周机制在VH发生中的作用。不过,患者的认知功能及用药情况可能会干扰视幻觉的正确判断,因此今后的相关研究应该包括对认知功能,疾病严重程度和多巴胺能药物使用的全面评估,以排除混杂因素。
3 结语
PD作为继阿尔茨海默病之后,老年人常见的神经系统退行性疾病,通常起病隐匿,目前尚缺乏有效、实用的早期诊断及病情评估工具。OCT技术作为一种简单、无创的快速成像技术,可以提供视网膜结构的高分辨率图像,对于PD的早期诊断、病情评估、鉴别诊断方面显示出一定的作用,并且与PD认知功能障碍、视幻觉相关,但今后仍需要大样本、多中心重复研究以提供更为可靠的结果,同时需要控制药物、年龄、测量仪器、测量方法等混杂因素的影响。相比于OCT技术而言,OCTA技术在PD中的研究才刚刚起步,通过OCTA技术,进一步发现PD患者存在视网膜微血管的异常,并且可能与其神经变性相关,对于PD的早期诊断也有一定的辅助作用,这为进一步探讨PD的发病机制以及早期诊断提供了新思路,值得深入研究。
开放获取声明
本文适用于知识共享许可协议 (Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/。
基金
暂无基金信息
参考文献
1、Borm CDJM, Visser F, Werkmann M, et al. Seeing ophthalmologic problems in Parkinson disease: results of a visual impairment questionnaire[J]. Neurology, 2020, 94(14): e1539-e1547.
2、Armstrong RA. Oculo-visual dysfunction in Parkinson's disease[J]. J Parkinsons Dis, 2015, 5(4): 715-726.
3、Harnois C, Di Paolo T. Decreased dopamine in the retinas of patients with Parkinson's disease[J]. Invest Ophthalmol Vis Sci, 1990, 31(11): 2473-2475.
4、Bodis-Wollner I, Kozlowski PB, Glazman S, et al. α-synuclein in the inner retina in parkinson disease[J]. Ann Neurol, 2014, 75(6): 964-966.
5、Ortu?o-Lizarán I, Beach TG, Serrano GE, et al. Phosphorylated α-synuclein in the retina is a biomarker of Parkinson's disease pathology severity[J]. Mov Disord, 2018, 33(8): 1315-1324.
6、Yang P, Pavlovic D, Waldvogel H, et al. String vessel formation is increased in the brain of Parkinson Disease[J]. J Parkinsons Dis, 2015, 5(4): 821-836.
7、Guan J, Pavlovic D, Dalkie N, et al. Vascular degeneration in Parkinson's disease[J]. Brain Pathol, 2013, 23(2): 154-164.
8、Pellegrini M, Vagge A, Ferro Desideri LF, et al. Optical coherence tomography angiography in neurodegenerative disorders[J]. J Clin Med, 2020, 9(6): 1706.
9、Inzelberg R, Ramirez JA, Nisipeanu P, et al. Retinal nerve fiber layer thinning in Parkinson disease[J]. Vision Res, 2004, 44(24): 2793-2797.
10、Ma LJ, Xu LL, Mao CJ, et al. Progressive changes in the retinal structure of patients with Parkinson's disease[J]. J Parkinsons Dis, 2018, 8(1): 85-92.
11、Ucak T, Alagoz A, Cakir B, et al. Analysis of the retinal nerve fiber and ganglion cell - inner plexiform layer by optical coherence tomography in Parkinson's patients[J]. Parkinsonism Relat Disord, 2016, 31: 59-64.
12、Zhou WC, Tao JX, Li J. Optical coherence tomography measurements as potential imaging biomarkers for Parkinson's disease: a systematic review and meta-analysis[J]. Eur J Neurol, 2021, 28(3): 763-774.
13、Satue M, Rodrigo MJ, Obis J, et al. Evaluation of progressive visual dysfunction and retinal degeneration in patients with Parkinson's disease[J]. Invest Ophthalmol Vis Sci, 2017, 58(2): 1151-1157.
14、Huang L, Wang C, Wang W, et al. The specific pattern of retinal nerve fiber layer thinning in Parkinson's disease: a systematic review and meta-analysis[J]. J Neurol, 2021, 268(11): 4023-4032.
15、Mendoza-Santiesteban CE, Gabilondo I, Palma JA, et al. The retina in multiple system atrophy: systematic review and meta-analysis[J]. Front Neurol, 2017, 8: 206.
16、Bendschneider D, Tornow RP, Horn FK, et al. Retinal nerve fiber layer thickness in normals measured by spectral domain OCT[J]. J Glaucoma, 2010, 19(7): 475-482.
17、Murueta-Goyena A, Del Pino R, Galdós M, et al. Retinal thickness predicts the risk of cognitive decline in parkinson disease[J]. Ann Neurol, 2021, 89(1): 165-176.
18、Miri S, Shrier EM, Glazman S, et al. The avascular zone and neuronal remodeling of the fovea in Parkinson disease[J]. Ann Clin Transl Neurol, 2015, 2(2): 196-201.
19、Murueta-Goyena A, Barrenechea M, Erramuzpe A, et al. Foveal Remodeling of Retinal Microvasculature in Parkinson's disease[J]. Front Neurosci, 2021, 15: 708700.
20、Rascunà C, Russo A, Terravecchia C, et al. Retinal thickness and microvascular pattern in early Parkinson's disease[J]. Front Neurol, 2020, 11: 533375.
21、Zou J, Liu K, Li F, et al. Combination of optical coherence tomography (OCT) and OCT angiography increases diagnostic efficacy of Parkinson's disease[J]. Quant Imaging Med Surg, 2020, 10(10): 1930-1939.
22、Kwapong WR, Ye H, Peng C, et al. Retinal microvascular impairment in the early stages of Parkinson's disease[J]. Invest Ophthalmol Vis Sci, 2018, 59(10): 4115-4122.
23、Shi C, Chen Y, Kwapong WR, et al. Characterization by fractal dimension analysis of the retinal capillary network in Parkinson disease[J]. Retina, 2020, 40(8): 1483-1491.
24、Robbins CB, Thompson AC, Bhullar PK, et al. Characterization of retinal microvascular and choroidal structural changes in Parkinson disease[J]. JAMA Ophthalmol, 2021, 139(2): 182-188.
25、Zhang Y, Zhang D, Gao Y, et al. Retinal flow density changes in early-stage Parkinson's disease investigated by swept-source optical coherence tomography angiography[J/OL]. Curr Eye Res, 2021, Epub ahead of print.
26、Zhou M, Wu L, Hu Q, et al. Visual impairments are associated with retinal microvascular density in patients with Parkinson's disease[J]. Front Neurosci, 2021, 15: 718820.
27、赵颖, 戴惟葭, 刘大川. 不同程度帕金森病患者黄斑区视网膜厚度及黄斑体积观察分析[J]. 中华眼底病杂志, 2019, 35(3): 226-230.
28、 Analysis of retinal thickness and macular volume in the macula of patients with different degrees of Parkinson’s disease[J]. Chinese Journal of Ocular Fundus Diseases, 2019, 35(3): 226-230.
29、Lee JY, Ahn J, Oh S, et al. Retina thickness as a marker of neurodegeneration in prodromal lewy body disease[J]. Mov Disord, 2020, 35(2): 349-354.
30、Ahn J, Lee JY, Kim TW, et al. Retinal thinning associates with nigral dopaminergic loss in de novo Parkinson disease[J]. Neurology, 2018, 91(11): e1003-e1012.
31、Garcia-Martin E, Larrosa JM, Polo V, et al. Distribution of retinal layer atrophy in patients with Parkinson disease and association with disease severity and duration[J]. Am J Ophthalmol, 2014, 157(2): 470-478.e2.
32、赵颖, 戴惟葭, 刘大川. 不同程度帕金森病患者视盘参数及视网膜神经纤维层厚度定量分析[J]. 中华眼底病杂志, 2020, 36(1): 15-19.
33、 Quantitative analysis of optic disc parameters and retinal nerve fiber layer thickness in patients with different degrees of Parkinson’s disease[J]. hinese Journal of Ocular Fundus Diseases, 2020, 36(1): 15-19.
34、Gulmez Sevim D, Unlu M, Gultekin M, et al. Evaluation of retinal changes in progressive supranuclear palsy and Parkinson disease[J]. J Neuroophthalmol, 2018, 38(2): 151-155.
35、Albrecht P, Müller AK, Südmeyer M, et al. Optical coherence tomography in parkinsonian syndromes[J]. PLoS One, 2012, 7(4): e34891.
36、Pedersen KF, Larsen JP, Tysnes OB, et al. Natural course of mild cognitive impairment in Parkinson disease: A 5-year population-based study[J]. Neurology, 2017, 88(8): 767-774.
37、陈生弟, 陈海波, 谭玉燕. 帕金森病痴呆的诊断与治疗指南[J]. 中华神经科杂志, 2011, 44(9): 635-637.
38、 Guidelines for the diagnosis and treatment of dementia in Parkinson’s disease[J]. Chinese Journal of Neurology, 2011, 44(9): 635-637.
39、Kwon KY, Kang SH, Kim M, et al. Nonmotor symptoms and cognitive decline in de novo Parkinson's disease[J]. Can J Neurol Sci, 2014, 41(5): 597-602.
40、Anang JB, Gagnon JF, Bertrand JA, et al. Predictors of dementia in Parkinson disease: a prospective cohort study[J]. Neurology, 2014, 83(14): 1253-1260.
41、Mutlu U, Colijn JM, Ikram MA, et al. Association of retinal neurodegeneration on optical coherence tomography with dementia: a population-based study[J]. JAMA Neurol, 2018, 75(10): 1256-1263.
42、余尔涵, 鄢晓新, 林丽珍, 等. 帕金森病合并认知功能损害的视网膜结构研究[J]. 中华神经科杂志, 2020, 53(7): 500-506.
43、 Study of retinal structure in Parkinson’s disease with cognitive impairment[J]. Chinese Journal of Neurology, 2020, 53(7): 500-506.
44、王芳, 田玉玲, 王秀秀. 黄斑区视网膜及视盘周围神经纤维层厚度在帕金森病痴呆及非痴呆患者中的特点分析[J]. 中风与神经疾病杂志, 2020, 37(7): 611-617.
45、 Characterization of macular retinal and peripapillary nerve fiber layer thickness in dementia and nondementia patients with Parkinson’s disease[J]. Journal of Apoplexy and Nervous Diseases, 2020, 37(7): 611-617.
46、Zhang JR, Cao YL, Li K, et al. Correlations between retinal nerve fiber layer thickness and cognitive progression in Parkinson's disease: A longitudinal study[J]. Parkinsonism Relat Disord, 2021, 82: 92-97.
47、Leyland LA, Bremner FD, Mahmood R, et al. Visual tests predict dementia risk in Parkinson disease[J]. Neurol Clin Pract, 2020, 10(1): 29-39.
48、Sung MS, Choi SM, Kim J, et al. Inner retinal thinning as a biomarker for cognitive impairment in de novo Parkinson's disease[J]. Sci Rep, 2019, 9(1): 11832.
49、Moreno-Ramos T, Benito-León J, Villarejo A, et al. Retinal nerve fiber layer thinning in dementia associated with Parkinson's disease, dementia with Lewy bodies, and Alzheimer's disease[J]. J Alzheimers Dis, 2013, 34(3): 659-664.
50、Khoo TK, Yarnall AJ, Duncan GW, et al. The spectrum of nonmotor symptoms in early Parkinson disease[J]. Neurology, 2013, 80(3): 276-281.
51、Lee JY, Kim JM, Ahn J, et al. Retinal nerve fiber layer thickness and visual hallucinations in Parkinson's Disease[J]. Mov Disord, 2014, 29(1): 61-67.
52、Visser F, Apostolov VI, Vlaar AMM, et al. Visual hallucinations in Parkinson's disease are associated with thinning of the inner retina[J]. Sci Rep, 2020, 10(1): 21110.
53、Marques A, Beze S, Pereira B, et al. Visual hallucinations and illusions in Parkinson's disease: the role of ocular pathology[J]. J Neurol, 2020, 267(10): 2829-2841.