视盘区脉络膜与内1/3巩膜形成筛板(laminacribrosa,LC),包绕RGC和CRA,LC损伤可阻碍RGC轴浆运输和减少CRA血流[34],从而损害视神经。青光眼的特征之一是筛板损伤,主要机制为高眼压对筛板的压迫[35]以及筛板细胞外基质(extracellular matrix,ECM)重塑[34]。OCT可通过测量LC厚度和LC弯曲指数显示青光眼的筛板损害。研究表明,POAG的LC厚度为(225.3±27.4)μm,较正常眼的LC厚度(248.5±26.8)μm显著变薄,且POAG的LC厚度变薄与视盘区RNFL厚度变薄呈显著正相关[36]。此外,POAG的LC弯曲指数为11.0±2.6,较正常眼的LC弯曲指数6.8±1.4显著变薄,且LC弯曲指数对青光眼诊断的受试者操作特征(receiver operating characteristic,ROC)曲线下面积(area under the curve,AUC)为0.9。XFG具有眼压高及眼压波动范围大的特点[37],且XFS的重要致病基因LOXL1与ECM重塑和纤维化有关[38],从而引起XFS和XFG的LC相关异常。研究表明XFG眼和XFS眼LC厚度分别为(151.1±51.2)μm和(158.8±49.6)μm,均较对照组的LC厚度(181.0±39.1)μm显著变薄,但XFG眼和XFS眼的LC厚度比较差异无统计学意义[39]。该研究发现,仅XFG的LC厚度变薄与视盘区RNFL厚度变薄呈显著正相关,XFS的LC厚度与视盘区RNFL厚度无显著相关性[39]。另有研究[37]纳入的XFG和POAG视盘区RNFL厚度比较差异无统计学意义,而XFG视盘区LC弯曲指数为8.8±2.9,较POAG视盘区的LC弯曲指数6.6±1.9显著增加。视盘区生物力学指标可体现青光眼LC的ECM重塑,研究表明XFG,POAG和正常眼的眶脂肪到巩膜-脉络膜-视网膜复合体的应变比率(the strain ratios of orbital fat to scleral-choroidal-retinal complex,ROFSCR)分别为2.6±1.1、4.0±1.7和1.8±0.4,XFG和POAG的ROFSCR均较正常眼显著增加[40]。
1、Lindberg JG. Clinical investigations on depigmentation of the pupillary
border and translucency of the iris in cases of senile cataract and in
normal eyes in elderly persons[ J]. Acta Ophthalmol Suppl, 1989, 190:
1-96.
2、Ma YN, Xie TY, Chen XY. Multiple gene polymorphisms associated
with exfoliation syndrome in the uygur population[ J]. J Ophthalmol,
2019, 2019: 9687823. DOI: 10.1155/2019/9687823.
3、Topouzis F, Founti P, Yu F, et al. Twelve-year incidence and baseline risk
factors for pseudoexfoliation: the Thessaloniki eye study (an American
ophthalmological society thesis)[ J]. Am J Ophthalmol, 2019, 206:
192-214. DOI: 10.1016/j.ajo.2019.05.005.
4、Arnarsson A, Jonasson F, Damji KF, et al. Exfoliation syndrome in the
Reykjavik Eye Study: risk factors for baseline prevalence and 5-year
incidence[ J]. Br J Ophthalmol, 2010, 94(7): 831-835. DOI: 10.1136/
bjo.2009.157636.
5、Jing Q, Li D, Gao W, et al. Associations of polymorphisms in LOXL1
and copper chaperone genes with pseudoexfoliation-syndrome-related
cataract in a Chinese Uygur population[ J]. Int Ophthalmol, 2020,
40(7): 1841-1848. DOI: 10.1007/s10792-020-01354-z.
6、Schlötzer-Schrehardt U, Naumann GOH. Ocular and systemic
pseudoexfoliation syndrome[ J]. Am J Ophthalmol, 2006, 141(5): 921-
937. DOI: 10.1016/j.ajo.2006.01.047.
7、Morris J, Myer C, Cornet T, et al. Proteomics of pseudoexfoliation
materials in the anterior eye segment[ J]. Adv Protein Chem Struct
Biol, 2021, 127: 271-290. DOI: 10.1016/bs.apcsb.2021.03.004.
8、Pulukool SK, Srimadh Bhagavatham SK, Kannan V, et al. Elevated ATP,
cytokines and potential microglial inflammation distinguish exfoliation
glaucoma from exfoliation syndrome[ J]. Cytokine, 2022, 151: 155807.
DOI: 10.1016/j.cyto.2022.155807.
9、Ritch R , Schlötzer- Schrehardt U. Ex foliation sy ndrome[ J].
Surv Ophthalmol, 2001, 45(4): 265-315. DOI: 10.1016/s0039-
6257(00)00196-x.
10、Mirza E, Oltulu R, Katipoğlu Z, et al. Monocyte/HDL ratio and
lymphocyte/monocyte ratio in patients with pseudoexfoliation
syndrome[ J]. Ocul Immunol Inflamm, 2020, 28(1): 142-146. DOI:
10.1080/09273948.2018.1545913.
11、Yüksel N, Karabaş VL, Arslan A, et al. Ocular hemodynamics in
pseudoexfoliation syndrome and pseudoexfoliation glaucoma[ J].Ophthalmology, 2001, 108(6): 1043-1049. DOI: 10.1016/s0161-
6420(01)00572-3.
12、Ocakoglu O, Koyluoglu N, Kayiran A, et al. Microvascular blood flow
of the optic nerve head and peripapillary retina in unilateral exfoliation
syndrome[ J]. Acta Ophthalmol Scand, 2004, 82(1): 49-53. DOI:
10.1046/j.1600-0420.2003.00196.x.
13、Çınar E, Yüce B, Aslan F. Retinal and choroidal vascular changes in eyes
with pseudoexfoliation syndrome: a comparative study using optical
coherence tomography angiography[ J]. Balkan Med J, 2019, 37(1):
9-14. DOI: 10.4274/balkanmedj.galenos.2019.2019.5.5.
14、Li F, Shang Q, Tang G, et al. Analysis of peripapillary and macular
choroidal thickness in eyes with pseudoexfoliative glaucoma
and fellow eyes[ J]. J Ophthalmol, 2020, 2020: 9634543. DOI:
10.1155/2020/9634543.
15、Li F, Ma L, Geng Y, et al. Comparison of macular choroidal thickness
and volume between pseudoexfoliative glaucoma and pseudoexfoliative
syndrome[ J] . J Ophthalmol, 2020, 2020:8886398. DOI:
10.1155/2020/8886398.
16、Un Y, Sonmez M. Choroidal thickness measurements of subjects
with pseudoexfoliative syndrome and pseudoexfoliative glaucoma: a
contralateral eye study[ J]. Eur J Ophthalmol, 2023, 33(5): 1986-1996.
DOI: 10.1177/11206721231171428.
17、Lim SH, Gu WM, Cha SC. Comparison of the retinal nerve fiber layer
and ganglion cell complex thickness in Korean patients with unilateral
exfoliation syndrome and healthy subjects[ J]. Eye, 2020, 34: 1419-
1425. DOI: 10.1038/s41433-019-0642-5.
18、Naderi Beni A, Entezari D, Koosha N, et al. Ganglion cell complex
and macular thickness layers in primary open-angle glaucoma,
pseudoexfoliation glaucoma and healthy eyes: a comparative study[ J].
Photodiagnosis Photodyn Ther, 2021, 36: 102563. DOI: 10.1016/
j.pdpdt.2021.102563.
19、Abdullayev ÖK, Kocatürk T, Abdullayev O, et al. Correlation of optical
coherence tomography and Doppler ultrasonography findings in
pseudoexfoliation syndrome[ J]. Int Ophthalmol, 2022, 42(2): 549-
558. DOI: 10.1007/s10792-021-02026-2.
20、Lee WJ, Baek SU, Kim YK, et al. Rates of ganglion cell-inner plexiform
layer thinning in normal, open-angle glaucoma and pseudoexfoliation
glaucoma eyes: a trend-based analysis[ J]. Invest Ophthalmol Vis Sci,
2019, 60(2): 599-604. DOI: 10.1167/iovs.18-25296.
21、Jeong Y, Kim YK, Jeoung JW, et al. Comparison of optical coherence
tomography structural parameters for diagnosis of glaucoma in
high myopia[ J]. JAMA Ophthalmol, 2023, 141(7): 631-639. DOI:
10.1001/jamaophthalmol.2023.1717.
22、Oddone F, Lucenteforte E, Michelessi M, et al. Macular versus retinal
nerve fiber layer parameters for diagnosing manifest glaucoma: a
systematic review of diagnostic accuracy studies[ J]. Ophthalmology,
2016, 123(5): 939-949. DOI: 10.1016/j.ophtha.2015.12.041.
23、Ji KB, Wan W, Yang Y, et al. Ameliorative effect of resveratrol on acute
ocular hypertension induced retinal injury through the SIRT1/NF-
κB pathway[ J]. Neurosci Lett, 2024, 826: 137712. DOI: 10.1016/
j.neulet.2024.137712.
24、Hondur G, Bayraktar S, Sen E, et al. Macula vessel density and its
relationship with the central visual field mean sensitivity across different
stages of exfoliation glaucoma[ J]. Clin Exp Optom, 2024, 107(2): 184-
191. DOI: 10.1080/08164622.2023.2259390.
25、Ye C, Wang X, Yu MC, et al. Progression of macular vessel density
in primary open-angle glaucoma: a longitudinal study[ J]. Am J
Ophthalmol, 2021, 223: 259-266. DOI: 10.1016/j.ajo.2020.10.008.
26、Kamalipour A, Moghimi S, Hou H, et al. Multilayer macula vessel
density and visual field progression in glaucoma[ J]. Am J Ophthalmol,
2022, 237: 193-203. DOI: 10.1016/j.ajo.2021.11.018.
27、Gür Güngör S, Sarigül Sezenöz A, Öztürk C, et al. Peripapillary
and macular vessel density measurement with optical coherence
tomography angiography in exfoliation syndrome[ J]. J Glaucoma,
2021, 30(1): 71-77. DOI: 10.1097/IJG.0000000000001685.
28、Philip S, Najafi A, Tantraworasin A, et al. Macula vessel density and
foveal avascular zone parameters in exfoliation glaucoma compared to
primary open-angle glaucoma[ J]. Invest Ophthalmol Vis Sci, 2019,
60(4): 1244-1253. DOI: 10.1167/iovs.18-25986.
29、Köse HC, Tekeli O. Optical coherence tomography angiography of
the peripapillary region and macula in normal, primary open angle
glaucoma, pseudoexfoliation glaucoma and ocular hypertension
eyes[ J]. Int J Ophthalmol, 2020, 13(5): 744-754. DOI: 10.18240/
ijo.2020.05.08.
30、Jo YH, Sung KR, Shin JW. Peripapillary and macular vessel density
measurement by optical coherence tomography angiography in
pseudoexfoliation and primary open-angle glaucoma[ J]. J Glaucoma,
2020, 29(5): 381-385. DOI: 10.1097/IJG.0000000000001464.
31、Sarrafpour S, Adhi M, Zhang JY, et al. Choroidal vessel diameters in
pseudoexfoliation and pseudoexfoliation glaucoma analyzed using
spectral-domain optical coherence tomography[ J]. J Glaucoma, 2017,
26(4): 383-389. DOI: 10.1097/IJG.0000000000000629.
32、Simsek M, Inam O, Sen E, et al. Analysis of the choroidal vascularity
in asymmetric pseudoexfoliative glaucoma using optical coherence
tomography-based image binarization[ J]. Eye, 2022, 36(8): 1615-
1622. DOI: 10.1038/s41433-021-01700-0.
33、Simsek M, Kocer AM, Cevik S, et al. Evaluation of the optic nerve
head vessel density in the patients with asymmetric pseudoexfoliative glaucoma: an OCT angiography study[ J]. Graefes Arch Clin Exp
Ophthalmol, 2020, 258(7): 1493-1501. DOI: 10.1007/s00417-020-
04668-x.
34、Strickland RG, Garner MA, Gross AK, et al. Remodeling of the
lamina cribrosa: mechanisms and potential therapeutic approaches
for glaucoma[ J]. Int J Mol Sci, 2022, 23(15): 8068. DOI: 10.3390/
ijms23158068.
35、Pitha I, Du L, Nguyen TD, et al. IOP and glaucoma damage: the
essential role of optic nerve head and retinal mechanosensors[ J].
Prog Retin Eye Res, 2024, 99: 101232. DOI: 10.1016/
j.preteyeres.2023.101232.
36、Lee SH, Han JW, Lee EJ, et al. Cognitive impairment and lamina
cribrosa thickness in primary open-angle glaucoma[ J]. Transl Vis Sci
Technol, 2020, 9(7): 17. DOI: 10.1167/tvst.9.7.17.
37、Won HJ, Sung KR, Shin JW, et al. Comparison of lamina cribrosa
curvature in pseudoexfoliation and primary open-angle glaucoma[ J].
Am J Ophthalmol, 2021, 223: 1-8. DOI: 10.1016/j.ajo.2020.09.028.
38、Wirostko BM, Curtin K, Taylor SC, et al. Risk of atrial fibrillation is
increased in patients with exfoliation syndrome: the Utah Project on
exfoliation syndrome (UPEXS)[ J]. Acta Ophthalmol, 2022, 100(4):
e1002-e1009. DOI: 10.1111/aos.15017.
39、Topcu H, Altan C, Cakmak S, et al. Comparison of the lamina cribrosa
parameters in eyes with exfoliation syndrome, exfoliation glaucoma and
healthy subjects[ J]. Photodiagnosis Photodyn Ther, 2020, 31: 101832.
DOI: 10.1016/j.pdpdt.2020.101832.
40、Incekalan TK, Peköz BÇ. Usability of real-time elastography for the
diagnosis of primary open angle and pseudoexfoliation glaucoma[ J]. J
Ultrasound Med, 2023, 42(7): 1471-1480. DOI: 10.1002/jum.16157.
41、Hondur G, Ucgul Atilgan C, Hondur AM. Sectorwise analysis of
peripapillary vessel density and retinal nerve fiber layer thickness in
exfoliation syndrome[ J]. Int Ophthalmol, 2021, 41(11): 3805-3813.
DOI: 10.1007/s10792-021-01950-7.
42、Goker YS, Kızıltoprak H. Quantitative analysis of radial peripapillary
capillary plexuses in patients with clinically unilateral pseudoexfoliation
syndrome[ J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(6): 1217-
1225. DOI: 10.1007/s00417-020-04643-6.
43、Arnarsson A, Sasaki H, Jonasson F. Twelve-year incidence of exfoliation
syndrome in the Reykjavik eye study[ J]. Acta Ophthalmol, 2013,
91(2): 157-162. DOI: 10.1111/j.1755-3768.2011.02334.x.
44、Onur IU, Acar OPA, Cavusoglu E, et al. Vessel density in early-stage
primary open angle glaucoma and pseudoexfoliation glaucoma: a
comparative controlled optical coherence tomography angiography
study[ J]. Arq Bras Of talmol, 2021, 84(4): 352-360. D OI:
10.5935/0004-2749.20210051.
45、Demirtaş AA, Karahan M, Ava S, et al. Evaluation of diurnal fluctuation
in parafoveal and peripapillary vascular density using optical coherence
tomography angiography in patients with exfoliative glaucoma and
primary open-angle glaucoma[ J]. Curr Eye Res, 2021, 46(1): 96-106.
DOI: 10.1080/02713683.2020.1784437.
46、Simsek M, Inam O, Sen E, et al. Peripapillary and macular choroidal
vascularity index in patients with clinically unilateral pseudoexfoliation
syndrome[ J]. Eye, 2021, 35(6): 1712-1720. DOI: 10.1038/s41433-
020-01171-9.
47、Karslioglu MZ, Kesim C, Yucel O, et al. Choroidal vascularity index in
pseudoexfoliative glaucoma[ J]. Int Ophthalmol, 2021, 41(12): 4197-
4208. DOI: 10.1007/s10792-021-01990-z.
48、Aghsaei Fard M, Safizadeh M, Shaabani A, et al. Automated evaluation
of parapapillary choroidal microvasculature in pseudoexfoliation
syndrome and pseudoexfoliation glaucoma[ J]. Am J Ophthalmol,
2021, 224: 178-184. DOI: 10.1016/j.ajo.2020.12.002.
49、Jo YH, Sung KR, Shin JW. Comparison of peripapillary choroidal
microvasculature dropout in primary open-angle, primary angle-closure, and pseudoexfoliation glaucoma[ J]. J Glaucoma, 2020,
29(12): 1152-1157. DOI: 10.1097/IJG.0000000000001650.
50、Chiras D, Kitsos G, Petersen MB, et al. Oxidative stress oveal avascular zone parameters in exfoliation glaucoma compared to
primary open-angle glaucoma[J]. Invest Ophthalmol Vis Sci, 2019,
60(4): 1244-1253. DOI: 10.1167/iovs.18-25986.
51、Köse HC, Tekeli O. Optical coherence tomography angiography of
the peripapillary region and macula in normal, primary open angle
glaucoma, pseudoexfoliation glaucoma and ocular hypertension
eyes[ J]. Int J Ophthalmol, 2020, 13(5): 744-754. DOI: 10.18240/
ijo.2020.05.08.
52、Jo YH, Sung KR, Shin JW. Peripapillary and macular vessel density
measurement by optical coherence tomography angiography in
pseudoexfoliation and primary open-angle glaucoma[ J]. J Glaucoma,
2020, 29(5): 381-385. DOI: 10.1097/IJG.0000000000001464.
53、Sarrafpour S, Adhi M, Zhang JY, et al. Choroidal vessel diameters in
pseudoexfoliation and pseudoexfoliation glaucoma analyzed using
spectral-domain optical coherence tomography[ J]. J Glaucoma, 2017,
26(4): 383-389. DOI: 10.1097/IJG.0000000000000629.
54、Simsek M, Inam O, Sen E, et al. Analysis of the choroidal vascularity
in asymmetric pseudoexfoliative glaucoma using optical coherence
tomography-based image binarization[ J]. Eye, 2022, 36(8): 1615-
1622. DOI: 10.1038/s41433-021-01700-0.
55、Simsek M, Kocer AM, Cevik S, et al. Evaluation of the optic nerve
head vessel density in the patients with asymmetric pseudoexfoliative glaucoma: an OCT angiography study[ J]. Graefes Arch Clin Exp
Ophthalmol, 2020, 258(7): 1493-1501. DOI: 10.1007/s00417-020-
04668-x.
56、Strickland RG, Garner MA, Gross AK, et al. Remodeling of the
lamina cribrosa: mechanisms and potential therapeutic approaches
for glaucoma[ J]. Int J Mol Sci, 2022, 23(15): 8068. DOI: 10.3390/
ijms23158068.
57、Pitha I, Du L, Nguyen TD, et al. IOP and glaucoma damage: the
essential role of optic nerve head and retinal mechanosensors[ J].
Prog Retin Eye Res, 2024, 99: 101232. DOI: 10.1016/
j.preteyeres.2023.101232.
58、Lee SH, Han JW, Lee EJ, et al. Cognitive impairment and lamina
cribrosa thickness in primary open-angle glaucoma[ J]. Transl Vis Sci
Technol, 2020, 9(7): 17. DOI: 10.1167/tvst.9.7.17.
59、Won HJ, Sung KR, Shin JW, et al. Comparison of lamina cribrosa
curvature in pseudoexfoliation and primary open-angle glaucoma[ J].
Am J Ophthalmol, 2021, 223: 1-8. DOI: 10.1016/j.ajo.2020.09.028.
60、Wirostko BM, Curtin K, Taylor SC, et al. Risk of atrial fibrillation is
increased in patients with exfoliation syndrome: the Utah Project on
exfoliation syndrome (UPEXS)[ J]. Acta Ophthalmol, 2022, 100(4):
e1002-e1009. DOI: 10.1111/aos.15017.
61、Topcu H, Altan C, Cakmak S, et al. Comparison of the lamina cribrosa
parameters in eyes with exfoliation syndrome, exfoliation glaucoma and
healthy subjects[ J]. Photodiagnosis Photodyn Ther, 2020, 31: 101832.
DOI: 10.1016/j.pdpdt.2020.101832.
62、Incekalan TK, Peköz BÇ. Usability of real-time elastography for the
diagnosis of primary open angle and pseudoexfoliation glaucoma[ J]. J
Ultrasound Med, 2023, 42(7): 1471-1480. DOI: 10.1002/jum.16157.
63、Hondur G, Ucgul Atilgan C, Hondur AM. Sectorwise analysis of
peripapillary vessel density and retinal nerve fiber layer thickness in
exfoliation syndrome[ J]. Int Ophthalmol, 2021, 41(11): 3805-3813.
DOI: 10.1007/s10792-021-01950-7.
64、Goker YS, Kızıltoprak H. Quantitative analysis of radial peripapillary
capillary plexuses in patients with clinically unilateral pseudoexfoliation
syndrome[ J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(6): 1217-
1225. DOI: 10.1007/s00417-020-04643-6.
65、Arnarsson A, Sasaki H, Jonasson F. Twelve-year incidence of exfoliation
syndrome in the Reykjavik eye study[ J]. Acta Ophthalmol, 2013,
91(2): 157-162. DOI: 10.1111/j.1755-3768.2011.02334.x.
66、Onur IU, Acar OPA, Cavusoglu E, et al. Vessel density in early-stage
primary open angle glaucoma and pseudoexfoliation glaucoma: a
comparative controlled optical coherence tomography angiography
study[ J]. Arq Bras Of talmol, 2021, 84(4): 352-360. D OI:
10.5935/0004-2749.20210051.
67、Demirtaş AA, Karahan M, Ava S, et al. Evaluation of diurnal fluctuation
in parafoveal and peripapillary vascular density using optical coherence
tomography angiography in patients with exfoliative glaucoma and
primary open-angle glaucoma[ J]. Curr Eye Res, 2021, 46(1): 96-106.
DOI: 10.1080/02713683.2020.1784437.
68、Simsek M, Inam O, Sen E, et al. Peripapillary and macular choroidal
vascularity index in patients with clinically unilateral pseudoexfoliation
syndrome[ J]. Eye, 2021, 35(6): 1712-1720. DOI: 10.1038/s41433-
020-01171-9.
69、Karslioglu MZ, Kesim C, Yucel O, et al. Choroidal vascularity index in
pseudoexfoliative glaucoma[ J]. Int Ophthalmol, 2021, 41(12): 4197-
4208. DOI: 10.1007/s10792-021-01990-z.
70、Aghsaei Fard M, Safizadeh M, Shaabani A, et al. Automated evaluation
of parapapillary choroidal microvasculature in pseudoexfoliation
syndrome and pseudoexfoliation glaucoma[ J]. Am J Ophthalmol,
2021, 224: 178-184. DOI: 10.1016/j.ajo.2020.12.002.
71、Jo YH, Sung KR, Shin JW. Comparison of peripapillary choroidal
microvasculature dropout in primary open-angle, primary angle-closure, and pseudoexfoliation glaucoma[ J]. J Glaucoma, 2020,
29(12): 1152-1157. DOI: 10.1097/IJG.0000000000001650.
72、Chiras D, Kitsos G, Petersen MB, et al. Oxidative stress in dry age-related macular degeneration and exfoliation
syndrome[J]. Crit Rev Clin Lab Sci, 2015, 52(1): 12-27. DOI:
10.3109/10408363.2014.968703.
73、Zengin MO, Karti O, Karahan E, et al. An evaluation of the relationship
between clinically unilateral pseudoexfoliation syndrome and age-related macular degeneration[ J]. Ophthalmic Surg Lasers Imaging
Retina, 2018, 49(1): 12-19. DOI: 10.3928/23258160-20171215-02.
74、Atum M, Kocayiğit İ, Sahinkuş S, et al. A new method of arterial
stiffness measurement in pseudoexfoliation syndrome: cardio-ankle
vascular index[ J]. Arq Bras Oftalmol, 2022, 85(6): 578-583. DOI:
10.5935/0004-2749.20220085.
75、Antman G, Keren S, Kurtz S, et al. The incidence of retinal vein
occlusion in patients with pseudoexfoliation glaucoma: a retrospective
cohort study[ J]. Ophthalmologica, 2019, 241(3): 130-136. DOI:
10.1159/000492401.
76、 广东省基础与应用基础研究基金项目(2023A1515010306)。 This work was supported by the
GuangDong Basic and Applied Basic Research Foundation(2023A1515010306).
77、Karagiannis D, Kontadakis GA, Klados NE, et al. Central retinal vein
occlusion and pseudoexfoliation syndrome[ J]. Clin Interv Aging,
2015, 10: 879-883. DOI: 10.2147/CIA.S776.