Müller 细胞介导的 IL-17 信号通路与糖尿病视网膜病变之间关系的研究进展
阅读量:5193
DOI:10.12419/24070105
发布日期:2024-10-28
作者:
黄姗姗 ,段芳
展开更多 '%20fill='white'%20fill-opacity='0.01'/%3e%3cmask%20id='mask0_3477_29692'%20style='mask-type:luminance'%20maskUnits='userSpaceOnUse'%20x='0'%20y='0'%20width='16'%20height='16'%3e%3crect%20id='&%23232;&%23146;&%23153;&%23231;&%23137;&%23136;_2'%20x='16'%20width='16'%20height='16'%20transform='rotate(90%2016%200)'%20fill='white'/%3e%3c/mask%3e%3cg%20mask='url(%23mask0_3477_29692)'%3e%3cpath%20id='&%23232;&%23183;&%23175;&%23229;&%23190;&%23132;'%20d='M14%205L8%2011L2%205'%20stroke='%23333333'%20stroke-width='1.5'%20stroke-linecap='round'%20stroke-linejoin='round'/%3e%3c/g%3e%3c/g%3e%3c/svg%3e)
关键词
糖尿病视网膜病变
Müller细胞
白介素-17
核因子-κB激活剂1
摘要
糖尿病视网膜病变(diabetes retinopathy, DR)是糖尿病常见的眼部并发症,其病理过程复杂,涉及多种细胞及炎症因子。Müller细胞作为视网膜主要支持细胞,在DR中不仅产生白介素-17(interleukin-17, IL-17),还作为其主要靶点发挥作用,通过谷氨酸代谢异常、血管内皮生长因子(vascular endothelial growth factor, VEGF)分泌增加及调控参与DR的病理过程,加重炎症反应。IL-17主要由辅助性T细胞17(T helper cell 17, Th17)分泌,通过促进多种炎症介质(如细胞因子、趋化因子和金属蛋白酶)的分泌,增强炎症反应,导致视网膜微血管损害和神经元凋亡,促进DR的发展。高糖环境下,Müller细胞功能受损,IL-17进一步加剧其功能障碍形成恶性循环。研究表明,阻断IL-17及核因子-κB激活剂1(Nuclear factor-kappa B activator 1, Act1)/肿瘤坏死因子受体关联因子6(tumor necrosis factor receptor associated factor 6, TRAF6)/核因子-κB(Nuclear factor-kappa B, NF-κB)信号通路可减轻DR的病理改变,为DR的治疗提供了新的思路。因此,深入研究IL-17与Müller细胞在DR中的相互作用机制,对于研究该疾病的发病机制及开发精准有效的治疗策略具有重要意义。
全文
文章亮点
1. 关键发现
• 本文总结了 IL-17 与 Müller 细胞在糖尿病视网膜病变 (diabetes retinopathy, DR) 中的相互作用机制及研究进展,探索未来治疗 DR 的新方法。
2. 已知与发现
• 在高糖环境下 Müller 细胞参与 IL-17 诱发的炎症反应加速 DR 进展,引发视网膜损伤。其中核因子 -κB 激活剂1(Nuclear factor-kappa B activator 1, Act1)/ 肿瘤坏死因子受体关联因子 6(tumor necrosis factor receptor associated factor 6, TRAF6)/ 核因子 -κB(Nuclear factor-kappa B, NF-κB) 信号通路其重要作用。
3. 意义与改变
• 抗 IL-17A 单克隆抗体、信号通路抑制剂以及炎症相关因子的基因敲除技术可能成为 DR 的新疗法,有望替代目前的视网膜激光治疗和抗 VEGF 药物,降低相关并发症风险。
糖尿病视网膜病变(diabetes retinopathy, DR)是以视网膜内微血管炎症性改变为病变特点的糖尿病眼部并发症。DR患者常出现视力下降、屈光改变、对比敏感度下降、视野缺陷等症状,严重时可致盲。在中国,DR的患病率约为16.3%,发病年龄主要集中在18~74岁[1]。全球糖尿病患者中DR患病率约为34.6%,其中威胁视力的DR患病率约为10.2%,超过50%由DR导致视力损伤或致盲的病例分布在亚太地区[2-3]。DR的病理改变主要包括血视网膜屏障(blood-retinal barrier, BRB)破坏、视网膜新生血管形成、视网膜谷氨酸代谢功能障碍和视网膜神经元凋亡等[4-7],其发病机制复杂,涉及多元醇途径、蛋白激酶C(protein kinase C, PKC)激活、氧化应激、晚期糖基化终产物AGEs(advanced glycation end products, AGEs)形成、生长因子和黏附分子表达增加等[8- 9]。研究表明,DR中白介素-1β(Interleukin-1β)、肿瘤坏死因子-α(Tumor Necrosis Factor-α, TNF-α)、IL-6、IL-8和单核细胞趋化蛋白-1(monocyte chemotactic protein 1, MCP-1)等炎症因子的表达增加[10-11],最新研究显示IL-17在1型及2型糖尿病的患者血液中均有增加[12-13]。Byrne等[14]进一步证实IL-17 的调节紊乱影响DR的进展。
目前缺乏IL-17在DR中作用机制的总结[6, 15],因此本文系统性地综述IL-17与DR之间的复杂关系及其可能机制,旨在更深入地理解免疫介导的炎症因子如何参与并驱动DR的发生与发展,为探索和开发针对该疾病精准有效的治疗策略提供理论基础。
TRAF6是免疫及炎症反应中一个重要的靶点[50],可作为E3泛素连接酶起作用。研究发现TRAF6在IL-1R的刺激下诱导NF-κB激活[51],而IL-17R家族和Act1在其细胞内区域与IL-1R结构域具有序列同源性[52]。此外,TRAF6基因敲除小鼠中的IL-17不能激活NF-κB和JNK[53],提示TRAF6与Act1结合参与IL-17介导的炎症反应[54-55]。有报道指TRAF6在DR患者中表达上调,表明该因子在促进DR炎症的发生和发展中至关重要[56-57]。
NF-κB是一种蛋白质复合物,几乎存在于所有类型的细胞中,是促炎基因表达的关键调控因子之一[58],参与感染、炎症等应激反应的发生。NF-κB通路的组成性激活通常与炎症性疾病相关,当细胞暴露于各种细胞外刺激时被迅速激活[59],引起抑制蛋白κB(Inhibitor of kappa B, IκB)的快速磷酸化、泛素化和最终的蛋白水解降解,从而释放NF-κB转移到细胞核,调节炎症相关基因的转录[60]。NF-κB的激活导致促炎细胞因子、趋化因子和VEGF等血管生成因子的产生,这些因子会引起眼底炎症和新血管的形成[61]。同时有研究表明NF-κB在DR患者中被激活,引起炎症及凋亡反应的发生[62]。
最近的研究揭示了IL-17信号通路的新调控机制。κB抑制因子激酶(inhibitor of kappa B kinase, IKK)相关激酶(如TBK1和IKKi)通过磷酸化Act1,减弱其与TRAF6的结合能力,从而抑制IL-17诱导的NF-κB激活。有报道指在高糖诱导下,糖尿病小鼠视网膜中的IL-17A通过Act1/IKK信号通路加剧Müller细胞激活和功能障碍;另外,与IL-17RA相关的Act1/TRAF6/IKK/NF-κB信号通路调节DR中IL-17A对Müller细胞的损伤,使用抗IL-17RA抗体可缓解高糖诱导的Müller细胞功能障碍,Act1敲低阻断了的下游信号激活,改善视网膜血管损伤和神经元细胞凋亡[15, 39]。有研究学者通过使用链脲佐菌素(Streptozocin, STZ)诱导糖尿病小鼠模型进行体内研究,比较野生型小鼠(C57BL/6)和IL-17A缺失小鼠(IL-17A-/-)的视网膜毛细血管退化情况,显示糖尿病诱导的视网膜毛细血管退化在IL-17A-/-小鼠中显著降低,视网膜内皮细胞死亡通过IL-17A/IL-17R /Act1/FADD信号级联反应发生,导致caspase介导的细胞凋亡[34]。STZ诱导DR小鼠模型中,NR2E3基因过表达可降低DR中炎性因子(TNF-α、IL-1β和IL-6)和细胞凋亡水平,同时抑制IL-17和Act1的表达,得出NR2E3通过调控芳香烃受体(aryl hydrocarbon receptor,AHR)/IL-17A通路抑制炎症和凋亡[63]。因此,推测Müller细胞在IL-17诱导的DR中发挥重要作用,其中IL-17/Act1相关的信号通路占主导作用。

图 1 高糖情况下Müller细胞介导IL-17信号通路的主要机制
Figure 1 The main mechanism of Müller cells mediating IL-17 signaling pathway under high glucose conditions
目前,临床上对DR的治疗主要包括视网膜激光光凝术(panretinal photocoagulation, PRP)、抗VEGF药物、玻璃体切割术(pars plana vitrectomy, PPV)以及糖皮质激素药物治疗等,但上述治疗方法存在黄斑水肿、白内障、青光眼等并发症的风险[11, 66]。
因此,通过阻断IL-17A或其信号通路,有望有效减轻糖尿病患者视网膜的炎症反应和病理损伤。对Müller细胞及IL-17在DR病程中的炎症作用及其与视网膜细胞动态平衡的关系进行深入研究,将为DR及其他眼部炎症性疾病的治疗提供坚实的实验和理论基础。
目前缺乏IL-17在DR中作用机制的总结[6, 15],因此本文系统性地综述IL-17与DR之间的复杂关系及其可能机制,旨在更深入地理解免疫介导的炎症因子如何参与并驱动DR的发生与发展,为探索和开发针对该疾病精准有效的治疗策略提供理论基础。
1 Müller细胞在DR的过程中参与炎症反应
Müller细胞作为主要的大神经胶质细胞和视网膜支持细胞,横跨整个视网膜,从内界膜到外界膜,支持光感受器和神经元的存活,在调节免疫应答与炎症反应方面扮演着不可或缺的角色,确保视网膜微环境的和谐与平衡[16- 17]。Müller细胞通过提供营养因子、清除代谢废物、控制细胞外空间体积和离子和水的稳态,参与视觉循环、释放神经递质、调节BRB功能[18-20],是促炎信号的主要细胞靶点。在高糖情况下,Müller细胞应激及反应标志物胶质纤维酸性蛋白(glial fibrillary acidic protein, GFAP)增加[21],谷氨酰胺合成酶水平降低[22],Müller细胞迁移能力增强,进而释放大量促血管生成因子及促纤维化因子,介导视网膜炎症、氧化应激、血管渗漏和新生血管[17, 23-27]。Müller细胞还是DR炎症因子的主要来源[7, 22, 28],通过自分泌信号级联增强视网膜中的炎症和神经元凋亡[29]。此外,异常的Müller细胞增殖和促纤维化介质的释放在纤维增生性组织的形成中起关键作用[30]。因此,DR导致的Müller功能失调可能使炎症反应进一步加重。2 IL-17促进炎症反应加速DR进展
IL-17是导致DR发生与发展的重要炎症因子,IL-17A是IL-17家族中被研究得最广泛的成员,具有强烈的促炎作用[31-32],其主要来源于辅助性T细胞17(T helper cell 17, Th17)。Th17是一种特定的CD4+ T细胞亚群,以分泌IL-17为主要特征,在宿主防御、炎症反应和自身免疫疾病中发挥重要作用[31]。IL-17通过促进多种炎症介质(如细胞因子、趋化因子和金属蛋白酶)的分泌,增强炎症反应。IL-17A和Th17还参与多种类型的糖尿病[33- 34]。在DR中,IL-17不仅通过下调紧密连接蛋白、激活人类酪氨酸激酶蛋白1(janus kinase1, JAK1)加重炎性细胞浸润等多种机制破坏BRB,还诱导内皮细胞分泌炎症因子,导致视网膜血管的渗漏和炎性细胞的浸润[14, 35]。同时,IL-17调控糖尿病中的中性粒细胞表达,参与DR的血管渗漏[29]。Yan等[36]报道指出,IL-17A在2型糖尿病小鼠非增殖性糖尿病视网膜(proliferative diabetic retinopathy, PDR)病变中起关键作用,抑制Th17分化对PDR具有保护作用。IL-17A-/-小鼠中,糖尿病介导的视网膜炎症、氧化应激等反应强度均显著降低[37]。IL-17A水平升高可导致视网膜局部炎症和免疫反应,通过影响视网膜细胞功能而加重DR病情[38]。3 Müller细胞参与IL-17诱发的炎症反应加速DR进展
IL-17A加速BRB破坏的作用,可能是通过在DR过程中促进Müller细胞功能损伤来实现的。在视网膜中因为BRB的存在,淋巴细胞较少。因此,IL-17在视网膜中主要由Müller细胞产生[15]。已有实验证据表明,IL-17参与DR的过程,Müller细胞的激活不仅分泌IL-17A,还作为IL-17效应的靶点发挥作用[15, 39]。高血糖环境下,Müller细胞会释放大量炎性细胞因子。IL-17A可以与其表达在Müller细胞、光感受器和视网膜内皮细胞上的受体A(IL-17RA)结合,形成异二聚体受体复合物,通过核因子-κB(Nuclear factor-kappa B, NF-κB)激活剂1 (Act1)激活下游信号通路,最终触发促炎细胞因子TNF-α、IL-1、IL-6和趋化因子C-X-C化学家族配体5(Chemokine C-X-C Motif Ligand 5, CXCL5)、趋化因子(Chemokine ligand, CCL)2、CCL7 和 CCL20的产生及新生血管的形成[40],这些细胞因子及新生血管反过来促进Müller细胞等中枢神经系统常驻细胞的激活,导致趋化因子的进一步分泌和炎症细胞的募集进入中枢神经系统,引起弥散性中枢神经系统炎症,形成恶性循环[39],导致视网膜微血管的损害,引发功能丧失[34, 37, 41]。体外实验表明,高糖刺激下Müller细胞中的晚期糖基化终末产物受体(receptor of advanced glycation endproducts, RAGE)呈现过表达状态,此类受体与配体结合后,可激活丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)信号转导通路,进而上调促炎性细胞因子的基因表达水平[42]。因此在DR的发病机制中,Müller细胞介导的IL-17分泌增加在炎症反应中发挥重要作用。4 Müller细胞介导的IL-17在DR发展中主要机制
在DR中,Müller细胞通过介导IL-17信号通路参与视网膜的炎性反应和病理改变。具体机制包括以下几个方面。4.1 谷氨酸代谢异常
Müller细胞通过谷氨酰胺合成酶( glutamine synthetase, GS)将谷氨酸转化为谷氨酰胺,从而消除高浓度谷氨酸对神经元的毒性。高糖、缺血缺氧和高游离脂肪酸等因素可导致Müller细胞功能受损,GS表达下调,谷氨酸转运受阻,进而引起谷氨酸积累、激活神经毒性信号转导途径最终导致神经元细胞凋亡[43-44]。在DR中,IL-17A加重了高糖和糖尿病诱导的Müller细胞活化和功能障碍引起谷氨酸水平升高,谷氨酰胺合成酶和兴奋性氨基酸转运蛋白-1表达降低[15]。4.2 血管内皮生长因子分泌增加
血管内皮生长因子(vascular endothelial growth factor, VEGF)在DR新生血管的形成中起重要作用。研究表明,Müller细胞在高糖环境下可分泌更多的VEGF,进一步促进新生血管的形成和视网膜病变的发展,而IL-17可能通过激活Müller细胞中的信号通路,上调VEGF的表达和分泌,从而加剧DR的病理改变[23, 45]。4.3 Act1/TRAF6/NF-κB信号通路的调控
Act1是IL-17下游信号通路中重要的激活因子,在体液免疫和自身免疫中都发挥重要作用,在炎性疾病中通过调节免疫细胞调控炎症的功能,且被认为是IL-17信号传导的主要介质[18, 46-47]。Act1同时也是炎症传导通路中重要的细胞内蛋白,能够同时激活NF-κB和JNK,其过表达可导致上皮细胞系中NF-κB和JNK的激活[19-20],诱导多种促炎基因的表达,包括细胞因子(如TNF-α、IL-1β)、趋化因子(如CXCL1、CXCL2)和金属蛋白酶,如基质金属蛋白酶(matrix metalloproteinase, MMP)-9[48]。在DR中,Th22浸润到视网膜分泌IL-22,IL-22结合IL-22Rα1激活Act1/TRAF6信号通路,促进视网膜上皮细胞的炎症,参与DR的发病过程[49]。视网膜内皮细胞死亡发生在IL-17A/IL-17R上,有Act1/FADD信号级联,导致caspase介导的细胞凋亡[34]。因此推测Act1在介导DR引起的视网膜病变中发挥重要作用。TRAF6是免疫及炎症反应中一个重要的靶点[50],可作为E3泛素连接酶起作用。研究发现TRAF6在IL-1R的刺激下诱导NF-κB激活[51],而IL-17R家族和Act1在其细胞内区域与IL-1R结构域具有序列同源性[52]。此外,TRAF6基因敲除小鼠中的IL-17不能激活NF-κB和JNK[53],提示TRAF6与Act1结合参与IL-17介导的炎症反应[54-55]。有报道指TRAF6在DR患者中表达上调,表明该因子在促进DR炎症的发生和发展中至关重要[56-57]。
NF-κB是一种蛋白质复合物,几乎存在于所有类型的细胞中,是促炎基因表达的关键调控因子之一[58],参与感染、炎症等应激反应的发生。NF-κB通路的组成性激活通常与炎症性疾病相关,当细胞暴露于各种细胞外刺激时被迅速激活[59],引起抑制蛋白κB(Inhibitor of kappa B, IκB)的快速磷酸化、泛素化和最终的蛋白水解降解,从而释放NF-κB转移到细胞核,调节炎症相关基因的转录[60]。NF-κB的激活导致促炎细胞因子、趋化因子和VEGF等血管生成因子的产生,这些因子会引起眼底炎症和新血管的形成[61]。同时有研究表明NF-κB在DR患者中被激活,引起炎症及凋亡反应的发生[62]。
最近的研究揭示了IL-17信号通路的新调控机制。κB抑制因子激酶(inhibitor of kappa B kinase, IKK)相关激酶(如TBK1和IKKi)通过磷酸化Act1,减弱其与TRAF6的结合能力,从而抑制IL-17诱导的NF-κB激活。有报道指在高糖诱导下,糖尿病小鼠视网膜中的IL-17A通过Act1/IKK信号通路加剧Müller细胞激活和功能障碍;另外,与IL-17RA相关的Act1/TRAF6/IKK/NF-κB信号通路调节DR中IL-17A对Müller细胞的损伤,使用抗IL-17RA抗体可缓解高糖诱导的Müller细胞功能障碍,Act1敲低阻断了的下游信号激活,改善视网膜血管损伤和神经元细胞凋亡[15, 39]。有研究学者通过使用链脲佐菌素(Streptozocin, STZ)诱导糖尿病小鼠模型进行体内研究,比较野生型小鼠(C57BL/6)和IL-17A缺失小鼠(IL-17A-/-)的视网膜毛细血管退化情况,显示糖尿病诱导的视网膜毛细血管退化在IL-17A-/-小鼠中显著降低,视网膜内皮细胞死亡通过IL-17A/IL-17R /Act1/FADD信号级联反应发生,导致caspase介导的细胞凋亡[34]。STZ诱导DR小鼠模型中,NR2E3基因过表达可降低DR中炎性因子(TNF-α、IL-1β和IL-6)和细胞凋亡水平,同时抑制IL-17和Act1的表达,得出NR2E3通过调控芳香烃受体(aryl hydrocarbon receptor,AHR)/IL-17A通路抑制炎症和凋亡[63]。因此,推测Müller细胞在IL-17诱导的DR中发挥重要作用,其中IL-17/Act1相关的信号通路占主导作用。

图 1 高糖情况下Müller细胞介导IL-17信号通路的主要机制
Figure 1 The main mechanism of Müller cells mediating IL-17 signaling pathway under high glucose conditions
该图通过BioRender.com创建。
This graph was created by BioRender.com.
5 总结与展望
综上所述,Müller细胞在DR的过程中通过应激反应标志物GFAP增加、谷氨酰胺合成酶水平降低等加剧炎症反应;IL-17作为重要炎症因子通过促进多种炎症介质释放加重DR进展;Müller细胞作为主要参与者通过谷氨酸代谢异常、VEGF分泌增加、Act1/TRAF6/NF-κB信号通路的调控参与IL-17诱发的炎症反应。其中IL-17/Act1相关的信号通路占主导作用[64],糖尿病患者外周血和眼房水IL-17A水平升高与DR风险相关,提示IL-17A及其下游信号通路(如Act1/TRAF6/IKK/NF-κB)可作为DR治疗的新靶点。抗IL-17A可能是治疗PDR的良好候选药物[65],另外抗IL-17A单克隆抗体或IL-17信号通路抑制剂以及炎症相关因子的基因敲除技术可能成为治疗DR的新兴疗法。目前,临床上对DR的治疗主要包括视网膜激光光凝术(panretinal photocoagulation, PRP)、抗VEGF药物、玻璃体切割术(pars plana vitrectomy, PPV)以及糖皮质激素药物治疗等,但上述治疗方法存在黄斑水肿、白内障、青光眼等并发症的风险[11, 66]。
因此,通过阻断IL-17A或其信号通路,有望有效减轻糖尿病患者视网膜的炎症反应和病理损伤。对Müller细胞及IL-17在DR病程中的炎症作用及其与视网膜细胞动态平衡的关系进行深入研究,将为DR及其他眼部炎症性疾病的治疗提供坚实的实验和理论基础。
利益冲突
所有作者均声明不存在利益冲突。开放获取声明
本文适用于知识共享许可协议 (Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。基金
暂无基金信息
参考文献
1、Hou X, Wang L, Zhu D, et al. Prevalence of diabetic retinopathy and
vision-threatening diabetic retinopathy in adults with diabetes in
China[ J]. NatCommun, 2023, 14(1): 4296. DOI: 10.1038/s41467-
023-39864-w.
2、Chua J, Lim CXY, Wong TY, et al. Diabetic retinopathy in the asiapacific[ J]. Asia PacJ Ophthalmol, 2018, 7(1): 3-16. DOI: 10.22608/
APO.2017511.
3、Shao Y, Zhou Q. Interpretation of clinical guidelines for diabetic
retinopathy of the American Academy of Ophthalmology 2018[ J].
Recent Advances in Ophthalmology, 2019, 39(06): 501-506. DOI:
10.13389/j.cnki.rao.2019.0115.
4、Gologorsky D, Thanos A, Vavvas D. Therapeutic interventions against
inflammatory and angiogenic mediators in proliferative diabetic
retinopathy[ J]. Mediators Inflamm, 2012, 2012: 629452. DOI:
10.1155/2012/629452.
5、Huang H, Gandhi JK, Zhong X, et al. TNF alpha is required for late
BRB breakdown in diabetic retinopathy, and its inhibition prevents
leukostasis and protects vessels and neurons from apoptosis[ J]. Invest
Ophthalmol VisSci, 2011, 52(3): 1336-1344. DOI: 10.1167/iovs.10-
5768.
6、Adamis AP, Berman AJ. Immunological mechanisms in the pathogenesis
of diabetic retinopathy[ J]. SeminImmunopathol, 2008, 30(2): 65-84.
DOI: 10.1007/s00281-008-0111-x.
7、Tang L, Xu GT, Zhang JF. Inflammation in diabetic retinopathy: possible
roles in pathogenesis and potential implications for therapy[ J]. Neural
Regen Res, 2023, 18(5): 976-982. DOI: 10.4103/1673-5374.355743.
8、苏陆青, 周炳娟, 张月玲, 等. 糖尿病视网膜病变发病机制的研
究进展[ J]. 医学研究与教育, 2011, 28(4): 74-77. DOI: 10.3969/
j.issn.1674-490X.2011.04.020.
Su LQ, Zhou BJ, Zhang YL, et al.Research progress on the pathogenesis of diabetic retinopathy[ J]. Med Res Educ, 2011, 28(4): 74-77. DOI: 10.3969/j.issn.1674-490X.2011.04.020.
Su LQ, Zhou BJ, Zhang YL, et al.Research progress on the pathogenesis of diabetic retinopathy[ J]. Med Res Educ, 2011, 28(4): 74-77. DOI: 10.3969/j.issn.1674-490X.2011.04.020.
9、易茜璐, 于明香. 糖尿病视网膜病变的发病机制[ J]. 复旦学
报(医学版), 2010, 37(5): 604-607. DOI: 10.3969/j.issn.1672-
8467.2010.05.024.
Yi QL, Yu MX. Pathogenesis of diabetic retinopathy[ J]. Fudan Univ J Med Sci, 2010, 37(5): 604-607. DOI: 10.3969/j.issn.1672- 8467.2010.05.024.
Yi QL, Yu MX. Pathogenesis of diabetic retinopathy[ J]. Fudan Univ J Med Sci, 2010, 37(5): 604-607. DOI: 10.3969/j.issn.1672- 8467.2010.05.024.
10、Demircan N, Safran BG, Soylu M, et al. Determination of vitreous
interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in
proliferative diabetic retinopathy[ J]. Eye, 2006, 20(12): 1366-1369.
DOI: 10.1038/sj.eye.6702138.
11、Abcouwer SF. Angiogenic factors and c y tokines in diabetic
retinopathy[ J]. JClinCellImmunol, 2013, Suppl 1(11): 1-12. DOI:
10.4172/2155-9899.
12、Marwaha AK, Crome SQ, Panagiotopoulos C, et al. Cutting edge:
increased IL-17-secreting T cells in children with new-onset type 1
diabetes[ J]. J Immunol, 2010, 185(7): 3814-3818. DOI: 10.4049/
jimmunol.1001860.
13、Obasanmi G, Lois N, Armstrong D, et al. Peripheral blood mononuclear
cells from patients with type 1 diabetes and diabetic retinopathy
produce higher levels of IL-17A, IL-10 and IL-6 and lower levels
of IFN-γ-apilot study[ J]. Cells, 2023, 12(3): 467. DOI: 10.3390/
cells12030467.
14、Byrne EM, Llorián-Salvador M, Tang M, et al. IL-17A damages the
blood-retinal barrier through activating the Janus kinase 1 pathway[ J].
Biomedicines, 2021, 9(7): 831. DOI: 10.3390/biomedicines9070831.
15、Qiu AW, Bian Z, Mao PA, et al. IL-17A exacerbates diabetic retinopathy
by impairing Müller cell function via Act1 signaling[ J]. Exp Mol Med,
2016, 48(12): e280. DOI: 10.1038/emm.2016.117.
16、Bringmann A, Pannicke T, Grosche J, et al. Müller cells in the healthy
and diseased retina[ J]. Prog Retin Eye Res, 2006, 25(4): 397-424.
DOI: 10.1016/j.preteyeres.2006.05.003.
17、Bringmann A, Pannicke T, Biedermann B, et al. Role of retinal glial cells
in neurotransmitter uptake and metabolism[ J]. NeurochemInt, 2009,
54(3-4): 143-160. DOI: 10.1016/j.neuint.2008.10.014.
18、Reichenbach A, Bringmann A. New functions of Müller cells[ J]. Glia,
2013, 61(5): 651-678. DOI: 10.1002/glia.22477.
19、Xia YF, Li YD, Li X , et al . Identification of alternatively
spliced Act1 and implications for its roles in oncogenesis[ J].
BiochemBiophysResCommun, 2002, 296(2): 406-412. DOI: 10.1016/
s0006-291x(02)00887-2.
20、Novatchkova M, Leibbrandt A, Werzowa J, et al. The STIR-domain
superfamily in signal transduction, development and immunity[ J].
Trends BiochemSci, 2003, 28(5): 226-229. DOI: 10.1016/S0968-
0004(03)00067-7.
21、Hernández-Ramírez E, Sánchez-Chávez G, Estrella-Salazar LA, et al.
Nitrosative stress in the rat retina at the onset of streptozotocin-induced
diabetes[ J]. CellPhysiolBiochem, 2017, 42(6): 2353-2363. DOI:
10.1159/000480007.
22、Carpi-Santos R, de Melo Reis RA, Gomes FCA, et al. Contribution
of Müller cells in the diabetic retinopathy development: focus on
oxidative stress and inflammation[ J]. Antioxidants, 2022, 11(4): 617.
DOI: 10.3390/antiox11040617.
23、Wang J, Xu X, Elliott MH, et al. Müller cell-derived VEGF is essential
for diabetes-induced retinal inflammation and vascular leakage[ J].
Diabetes, 2010, 59(9): 2297-2305. DOI: 10.2337/db09-1420.
24、Penn JS, Madan A, Caldwell RB, et al. Vascular endothelial growth factor
in eye disease[ J]. Prog Retin Eye Res, 2008, 27(4): 331-371. DOI:
10.1016/j.preteyeres.2008.05.001.
25、Bai Y, Ma JX, Guo J, et al. Müller cell-derived VEGF is a significant
contributor to retinal neovascularization[ J]. J Pathol, 2009, 219(4):
446-454. DOI: 10.1002/path.2611.
26、Bringmann A, Wiedemann P. Müller glial cells in retinal disease[ J].
O p ht ha l m o l J Int D' o p hta l m o l o g i e Int J O p ht ha l m o l Z Fu r
Augenheilkunde, 2012, 227(1): 1-19. DOI: 10.1159/000328979.
27、Coughlin BA , Feenstra DJ, Mohr S. Müller cells and diabetic
retinopathy[ J]. Vision Res, 2017, 139: 93-100. DOI: 10.1016/
j.visres.2017.03.013.
28、Vujosevic S, Simó R. Local and systemic inflammatory biomarkers of
diabetic retinopathy: an integrative approach[ J]. Invest Ophthalmol
Vis Sci, 2017, 58(6): BIO68-BIO75. DOI: 10.1167/iovs.17-21769.
29、Liu H, Lessieur EM, Saadane A, et al. Neutrophil elastase contributes
to the pathological vascular permeability characteristic of diabetic
retinopathy[ J]. Diabetologia, 2019, 62(12): 2365-2374. DOI:
10.1007/s00125-019-04998-4.
30、Bringmann A, Wiedemann P. Involvement of Müller glial cells in
epiretinal membrane formation[ J]. Graefe's Arch Clin Exp Ophthalmol,
2009, 247(7): 865-883. DOI: 10.1007/s00417-009-1082-x.
31、Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic
inflammation[ J]. Nat Rev Drug Discov, 2012, 11(10): 763-776. DOI:
10.1038/nrd3794.
32、Mills KHG. IL-17 and IL-17-producing cells in protection versus
pathology[ J]. NatRevImmunol, 2023, 23(1): 38-54. DOI: 10.1038/
s41577-022-00746-9.
33、Shao L, Feng B, Zhang Y, et al. The role of adipose-derived
inflammatory cytokines in type 1 diabetes[ J]. Adipocyte, 2016, 5(3):
270-274. DOI: 10.1080/21623945.2016.1162358.
34、Lindstrom SI, Sigurdardottir S, Zapadka TE, et al. Diabetes induces IL-
17A-Act1-FADD-dependent retinal endothelial cell death and capillary
degeneration[ J]. J Diabetes Complications, 2019, 33(9): 668-674.
DOI: 10.1016/j.jdiacomp.2019.05.016.
35、Chen Y, Yang P, Li F, et al. The effects of Th17 cytokines on the
inflammatory mediator production and barrier function of ARPE-
19 cells[ J]. PLoS One, 2011, 6(3): e18139. DOI: 10.1371/journal.
pone.0018139.
36、Yan A, Zhang Y, Wang X, et al. Interleukin 35 regulates interleukin
17 expression and T helper 17 in patients with proliferative diabetic
retinopathy[ J]. Bioengineered, 2022, 13(5): 13293-13299. DOI:
10.1080/21655979.2022.2080367.
37、Sigurdardottir S, Zapadka TE, Lindstrom SI, et al. Diabetes-mediated
IL-17A enhances retinal inflammation, oxidative stress, and vascular
permeability[ J]. CellImmunol, 2019, 341: 103921. DOI: 10.1016/
j.cellimm.2019.04.009.
38、Qiu AW, Liu QH, Wang JL. Blocking IL-17A Alleviates Diabetic
Retinopathy in Rodents. Cell Physiol Biochem. 2017;41(3):960-972.
doi: 10.1159/000460514.
39、Qiu AW, Huang DR, LI B, et al. IL-17A injury to retinal ganglion cells is
mediated by retinal Müller cells in diabetic retinopathy [ J]. Cell Death
Dis, 2021, 12(11): 1057.DOI: 10.1038/s41419-021-04350-y.
40、Isailovic N, Daigo K, Mantovani A, et al. Interleukin-17 and innate
immunity in infections and chronic inflammation[ J]. J Autoimmun,
2015, 60: 1-11. DOI: 10.1016/j.jaut.2015.04.006.
41、Xiao Y, Jin J, Chang M, et al. TPL2 mediates autoimmune inflammation
through activation of the TAK1 axis of IL-17 signaling[ J]. JExp Med,
2014, 211(8): 1689-1702. DOI: 10.1084/jem.20132640.
42、Rübsam A, Parikh S, Fort PE. Role of inflammation in diabetic
retinopathy[ J]. Int JMol Sci, 2018, 19(4): E942. DOI: 10.3390/
ijms19040942.
43、Xie B, Jiao Q, Cheng Y, et al. Effect of pigment epithelium-derived
factor on glutamate uptake in retinal Muller cells under high-glucose
conditions[ J]. Invest Ophthalmol VisSci, 2012, 53(2): 1023-1032.
DOI: 10.1167/iovs.11-8695.
44、Shen X, Xie B, Cheng Y, et al. Effect of pigment epithelium derived
factor on the expression of glutamine synthetase in early phase of
experimental diabetic retinopathy[ J]. Ocul Immunol Inflamm, 2011,
19(4): 246-254. DOI: 10.3109/09273948.2011.580073.
45、Fu S, Dong S, Zhu M, et al. Müller glia are a major cellular source of
survival signals for retinal neurons in diabetes[ J]. Diabetes, 2015,
64(10): 3554-3563. DOI: 10.2337/db15-0180.
46、Pathak JL, Fang Y, Chen Y, et al. Downregulation of macrophagespecific act-1 intensifies periodontitis and alveolar bone loss possibly
via TNF/NF-κB signaling[ J]. Front Cell Dev Biol, 2021, 9: 628139.
DOI: 10.3389/fcell.2021.628139.
47、Song X, Qian Y. The activation and regulation of IL-17 receptor
mediated signaling[ J]. Cytokine, 2013, 62(2): 175-182. DOI:
10.1016/j.cyto.2013.03.014.
48、Liu C, Qian W, Qian Y, et al. Act1, a U-box E3 ubiquitin ligase for
IL-17 signaling[ J]. Sci Signal, 2009, 2(92): ra63. DOI: 10.1126/
scisignal.2000382.
49、Wang Y, Yu H, Li J, et al. Th22 cells induce Müller cell activation via
the Act1/TRAF6 pathway in diabetic retinopathy[ J]. Cell Tissue Res,
2022, 390(3): 367-383. DOI: 10.1007/s00441-022-03689-8.
50、Wu H, Arron JR . TRAF6, a molecular bridge spanning adaptive
immunity, innate immunity and osteoimmunology[ J]. Bioessays, 2003,
25(11): 1096-1105. DOI: 10.1002/bies.10352.
51、WALSH M C, LEE J, CHOI Y. Tumor necrosis factor receptorassociated factor 6 (TRAF6) regulation of development, function,
and homeostasis of the immune system. Immunological reviews 2015,
266(1): 72-92. DOI: 10.1111/imr.12302.
52、Chang SH, Park H, Dong C. Act1 adaptor protein is an immediate
and essential signaling component of interleukin-17 receptor[ J].
J Biol Chem, 2006, 281(47): 35603-35607. DOI: 10.1074/jbc.
C600256200.
53、Schwandner R, Yamaguchi K, Cao Z. Requirement of tumor necrosis
factor receptor-associated factor (TRAF)6 in interleukin 17 signal
transduction[ J]. J Exp Med, 2000, 191(7): 1233-1240. DOI: 10.1084/
jem.191.7.1233.
54、Kanamori M, Kai C, Hayashizaki Y, et al. NF-kappa B activator Act1
associates with IL-1/Toll pathway adaptor molecule TRAF6[ J]. FEBS
Lett, 2002, 532(1-2): 241-246. DOI: 10.1016/s0014-5793(02)03688-8.
55、Bradley JR, Pober JS. Tumor necrosis factor receptor-associated factors
(TRAFs)[ J]. Oncogene, 2001, 20(44): 6482-6491. DOI: 10.1038/
sj.onc.1204788.
56、Vos S, Aaron R, Weng M, et al. CD40 upregulation in the retina of
patients with diabetic retinopathy: association with TRAF2/TRAF6
upregulation and inflammatory molecule expression[ J]. Invest
Ophthalmol Vis Sci, 2023, 64(7): 17. DOI: 10.1167/iovs.64.7.17.
57、Kobayashi T, WalshMC, Choi Y. The role of TRAF6 in signal
transduction and the immune response[ J]. Microbes Infect, 2004,
6(14): 1333-1338. DOI: 10.1016/j.micinf.2004.09.001.
58、Tak PP, Firestein GS. NF-kappa B: a key role in inflammatory
diseases[ J]. J ClinInvest, 2001, 107(1): 7-11. DOI: 10.1172/JCI11830.
59、Li Q, Verma IM. NF-kappaB regulation in the immune system[ J].
Nat Rev Immunol, 2002, 2(10): 725-734. DOI: 10.1038/nri910.
60、Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the
control of NF-[kappa]B activity[ J]. Annu Rev Immunol, 2000, 18: 621-
663. DOI: 10.1146/annurev.immunol.18.1.621.
61、Almalki WH, Almujri SS. The impact of NF-κB on inflammatory and
angiogenic processes in age-related macular degeneration[ J]. ExpEye
Res, 2024, 248: 110111. DOI: 10.1016/j.exer.2024.110111.
62、Li J, Chen K, Li X, et al. Mechanistic insights into the alterations and
regulation of the AKT signaling pathway in diabetic retinopathy[ J].
Cell Death Discov, 2023, 9(1): 418. DOI: 10.1038/s41420-023-01717-
2.
63、Ding Y, Chen L, Xu J, et al. NR2E3 inhibits the inflammation and
apoptosis in diabetic retinopathy by regulating the AHR/IL-17A
signaling pathway[ J]. Naunyn Schmiedebergs Arch Pharmacol, 2024: 9081-9094. DOI: 10.1007/s00210-024-03213-5.
64、Li X , Qin W, Qin X , et al. Meta-analysis of the relationship
bet ween ocular and per ipheral ser um IL -17A and diabetic
retinopathy[ J]. Front Endocrinol, 2024, 15: 1320632. DOI: 10.3389/
fendo.2024.1320632.
65、Zhou AY, Taylor BE, Barber KG, et al. Anti-IL17A halts the onset of
diabetic retinopathy in type I and II diabetic mice[ J]. Int JMol Sci, 2023,
24(2): 1347. DOI: 10.3390/ijms24021347.
66、Giuliari GP. Diabetic retinopathy: current and new treatment
options[ J ]. Curr Diabetes Rev, 2012, 8(1) : 32-41. DOI :
10.2174/157339912798829188.