Faricimab玻璃体腔内注射治疗视网膜静脉阻塞的研究进展
阅读量:4982
DOI:10.12419/24082702
发布日期:2024-11-13
作者:
牛浩宇 ,余萍
展开更多 '%20fill='white'%20fill-opacity='0.01'/%3e%3cmask%20id='mask0_3477_29692'%20style='mask-type:luminance'%20maskUnits='userSpaceOnUse'%20x='0'%20y='0'%20width='16'%20height='16'%3e%3crect%20id='&%23232;&%23146;&%23153;&%23231;&%23137;&%23136;_2'%20x='16'%20width='16'%20height='16'%20transform='rotate(90%2016%200)'%20fill='white'/%3e%3c/mask%3e%3cg%20mask='url(%23mask0_3477_29692)'%3e%3cpath%20id='&%23232;&%23183;&%23175;&%23229;&%23190;&%23132;'%20d='M14%205L8%2011L2%205'%20stroke='%23333333'%20stroke-width='1.5'%20stroke-linecap='round'%20stroke-linejoin='round'/%3e%3c/g%3e%3c/g%3e%3c/svg%3e)
关键词
法瑞西单抗
视网膜静脉阻塞
血管内皮生长因子
血管内皮生长因子A
血管生成素-2
糖皮质激素
摘要
视网膜静脉阻塞(retinal vein occlusion, RVO)是导致视力损害的主要眼底疾病之一,常引发视网膜缺血、出血、液体渗漏和黄斑水肿,从而导致视力下降甚至永久丧失。目前,RVO继发黄斑水肿的主要治疗方法是玻璃体腔内注射抗血管内皮生长因子(vascular endothelial growth factor, VEGF)药物。然而,RVO的病理机制不仅限于VEGF,还涉及血管生成素-2(angiopoietin-2, Ang-2)的作用。在病理状态下,Ang-2通过破坏血管稳定性,诱导新生血管形成,并加剧炎症反应,进一步促进RVO的病程进展。法瑞西单抗(Faricimab)作为一种双特异性抗体药物,能够同时抑制VEGF-A和Ang-2这两条关键的病理通路,显示出在改善患者视力方面的潜在优势。文章对Faricimab在RVO治疗中的作用机制、临床应用、相关治疗药物对比及未来发展前景进行了详细论述,为其在眼科领域的进一步应用提供了理论依据和参考。
全文
RVO是仅次于糖尿病视网膜病变的第二大致盲性眼底疾病。全球范围内,RVO的患病率约为0.6%至1.6%。在中国,RVO的发病率逐年上升,严重影响患者的视觉质量和生活质量 。因此,探索和应用RVO的新型治疗方法显得尤为重要。本研究旨在探讨Faricimab应用于RVO的疗效与可行性,以期为广大RVO患者提供新的治疗方案。
1 RVO概述
1.1 RVO的简介
RVO是一种由于视网膜静脉血管阻塞导致视网膜血液循环受阻的血管性病变[1]。根据阻塞发生的具体部位,RVO 可分为中央视网膜静脉阻塞(central retinal vein occlusion, CRVO)和分支视网膜静脉阻塞(branch retinal vein occlusion, BRVO)[2]。全球约有 250 万例 CRVO 患者及约 1 390 万例 BRVO 患者,突显了 RVO 在全球范围内的普遍性及其对公共卫生的重大影响。当血栓阻塞视网膜静脉时,局部血液循环受阻,静脉压力升高,导致视网膜缺氧并损伤血管内皮细胞,引发功能障碍[3-4]。这种状态下,受损的血管内皮细胞和血管壁变得更加脆弱,增加了血管通透性,导致血浆成分渗入视网膜组织,进而引发黄斑水肿及其他类型的视网膜水肿[5]。黄斑水肿会引发严重的视力下降和中心视力模糊,静脉压力升高和血管渗漏也可造成视网膜其他区域的水肿,导致广泛的视力模糊和视野缺损[6]。此外,缺氧状态会刺激视网膜和其他眼内组织生成新生血管以改善血液供应,但这些新生血管结构不成熟,易于渗漏和出血,进一步加剧视网膜水肿及视力下降,并可能导致视网膜和玻璃体积血、视力急剧下降及视网膜脱离的风险[7-8]。
1.2 RVO的病理机制
RVO的病理机制之一是视网膜中VEGF水平的异常升高[9]。VEGF是一种同源二聚体蛋白,能够刺激血管内皮细胞的生长并增加血管通透性,在血管生成和修复过程中起着至关重要的作用[10]。此外,RVO的病理机制还涉及Ang-2信号通路。在RVO的病理状态下,视网膜由于血流受阻和氧供应不足而经历缺氧,进而刺激Ang-2的表达[11]。Ang-2通过与血管生成素1(angiopoietin-1, Ang-1)竞争性结合Tie2受体,抑制Ang-1通过Tie2信号通路所介导的血管稳定作用[12-13]。Ang-2水平的升高促进了脆弱新生血管的形成,这些新生血管易于渗漏,从而加剧视网膜水肿和炎症反应[14]。研究表明,在多种视网膜疾病中,RVO患者的眼内环境中Ang-2的水平升高[15]。此外,某些全身性疾病也常作为RVO的诱因。例如高血压通过改变血流动力学增加了血管痉挛的风险,进而减缓视网膜静脉血流速度,增加血栓形成的风险[16]。动脉粥样硬化(Atherosclerosis, AS)、视网膜血管炎、青光眼和眼外肿瘤压迫等病变也被认为是RVO的重要致病因素[17-18]。
2 Faricimab概述
Faricimab 为一种能够同时抑制 VEGF-A 与 Ang-2 的创新型双特异性抗体药物。该药物于2017年进入临床试验阶段,并在2022年1月获得美国食品药品监督管理局(U.S. Food and Drug Administration, FDA)批准,用于治疗新生血管性年龄相关性黄斑变性(Neovascular Age-related Macular Degeneration, nAMD)和糖尿病黄斑水肿(Diabetic Macular Edema, DME)。同年9月,欧盟也批准了Faricimab用于相同适应证。目前,Faricimab已在全球40多个国家和地区获得批准,广泛用于包括nAMD、DME以及RVO在内的多种视网膜血管性疾病的治疗[19-20]。在临床应用中,Faricimab通过玻璃体腔内注射给药,针头在距角膜缘约3.5~4.0 mm的巩膜部位正对眼球中心插入,缓慢注入药物。这一给药方式与其他抗VEGF药物相似[21]。由于Faricimab直接通过眼部注射给药,主要在局部发挥作用,从而减少了系统性暴露的风险。这种给药方式不仅增强了药物的局部疗效,还有效减少了可能的全身性不良反应。Faricimab在眼部代谢过程中,通过溶酶体类似于内源性IgG的方式分解为小肽和氨基酸,全身半衰期约为7.5 d[22]。在初始治疗阶段,根据患者的解剖学状况和视力改善情况,可以调整Faricimab的注射频率至每4周、8周、12周或16周1次,直至达到最佳视力或解剖学改善[23-24]。研究表明,超过60%的患者在完成上述周期性治疗后,能够将注射间隔延长至每4个月1次,同时仍能维持和改善视力[22]。这一创新型药物的开发不仅标志着眼科治疗领域的重要进展,也为患者提供了更有效且持久的治疗方案,展现出显著的临床潜力和应用前景[25-26]。
3 Faricimab治疗RVO的机制
3.1 Faricimab抑制Ang-2通路
Faricimab通过抑制Ang-2与Tie2受体的相互作用,发挥其治疗作用。具体而言,Faricimab通过直接结合Ang-2,阻止其与Tie2受体的结合,从而抑制了Ang-2引发的血管不稳定性[11,27]。这有效减少了因Ang-2过度表达引起的病理性血管新生和血管通透性增加。通过抑制Ang-2的活性,Faricimab能够恢复Ang-1与Tie2受体的正常相互作用,进而促进血管稳定并减轻炎症反应[28]。这一机制对于减轻视网膜水肿并改善视力至关重要,特别是在那些由血管通透性增加和新生血管形成所驱动的视网膜疾病中[29]。
3.2 Faricimab的双重抑制机制
在RVO中,VEGF-A通过与其主要受体——血管内皮生长因子受体-2(Vascular Endothelial Growth Factor Receptor-2, VEGFR-2)结合,促进血管内皮细胞的增殖、迁移和新生血管的形成[30]。VEGF-A 的过度表达会导致异常新生血管生成及视网膜液体积聚,从而引发黄斑水肿和视力下降。Faricimab 通过与 VEGF-A 结合,阻断其与 VEGFR-2 的相互作用,从而抑制 VEGF-A 介导的信号传导通路,有效减少了内皮细胞的增殖、迁移及管腔形成,在控制病变进展和改善视力方面展现出显著疗效[31-32]。除了抑制 VEGF-A 外,Faricimab 还靶向Ang-2,后者在病理状态下通过破坏血管稳定性,增强 VEGF 的促血管生成作用,从而加剧视网膜病变[31]。Faricimab 通过同时抑制 VEGF-A 和 Ang-2 两条病理通路,能够协同减弱 VEGF 的促血管生成作用,减少炎症反应并增强血管屏障功能[33-35]。Faricimab 的双特异性靶向机制在控制 RVO 方面展现出独特优势,特别是在抑制炎症反应、维持血管稳定性以及全面改善视网膜微环境方面效果显著,从而为视网膜提供更持久的血管稳定性,并有效降低疾病复发风险[36-38]。
4 Faricimab在RVO治疗中与传统方式的比较
4.1Faricimab与 抗VEGF药物对比
抗VEGF药物,如贝伐单抗(Bevacizumab)、雷珠单抗(Ranibizumab)和阿柏西普(Aflibercept),目前是治疗RVO继发黄斑水肿的主要药物。这些药物通过中和VEGF-A,阻断其与VEGF受体的结合,从而抑制VEGF介导的血管新生和血管通透性增加[39]。尽管抗VEGF药物在玻璃体内注射中的疗效显著,但它们也存在一些缺点和风险,如眼内感染、玻璃体积血和视网膜脱离等。
研究表明,Faricimab 的安全性在 RVO 患者中表现与其他抗VEGF药物相当,但其显著优势在于疗效持久性,尤其是在难治性视网膜疾病患者中效果更加突出[40]。这种差异主要归因于两者的作用机制不同:Faricimab 同时靶向 VEGF-A 和 Ang-2,能够更有效地稳定血管结构,并延长药物的起效时间[41]。根据 Tadayoni 等[27]的临床研究,使用 Faricimab 治疗的 RVO 患者在早期的最佳矫正视力 (best corrected visual acuity, BCVA) 提升更快,且这种疗效持续至第 24 周。此外,Faricimab 治疗组的中央视网膜厚度(central retinal thickness, CRT) 显著减小,解剖学改善更加显著,黄斑渗漏发生率较低,且患者对该药物的耐受性良好。一项荟萃分析显示,Faricimab 相较于其他抗VEGF疗法,每年可减少 2.42 次注射,患者仍能保持相同的视力改善效果[41]。这一减少的注射频率不仅降低了玻璃体腔内注射带来的眼部和全身并发症风险,还提升了患者的依从性。此外,根据加利福尼亚州旧金山的一项研究,Faricimab 在特定医疗体系中具有比传统抗VEGF药物更高的经济效益,特别是在长期治疗中显示出更强的成本效益,减轻了患者和医疗系统的负担[42]。通过这些研究,Faricimab 展现了其在 RVO 治疗中的显著优势,不仅在持久性和疗效方面优于传统疗法,还在减少注射频率和经济效益方面具有独特优势。
4.2Faricimab与糖皮质激素药物对比
玻璃体腔内注射糖皮质激素(glucocorticoids, GC)是治疗RVO的一种有效方法,尤其适用于对抗VEGF药物反应不佳或有禁忌证的患者。GC通过其强大的抗炎和抗水肿作用,减少炎症介质的释放,抑制VEGF表达,降低血管通透性,稳定血-视网膜屏障,从而减轻视网膜水肿并改善视力[43-44]。常用的GC药物包括曲安奈德(triamcinolone acetonide, TA)、地塞米松植入物(Ozurdex)和氟轻松乙酸酯眼内植入物(Iluvien),这些药物还能抑制新生血管形成,有助于防止RVO并发症的发展[45]。
目前,尚无直接比较Faricimab与GC治疗RVO疗效的研究。然而,Covello等[46]的研究表明,地塞米松治疗后患者的视网膜结构紊乱、外界膜破坏、黄斑缺血、CRT以及BRVO症状均得到显著改善,显示两者在改善RVO症状方面均具有效果。不过,GC的效果在首次注射时最为明显,随着多次注射,疗效可能减弱。相比之下,Faricimab通过同时抑制VEGF-A和Ang-2两条通路,在延长疗效持续时间方面表现更佳,通常可将给药间隔延长至3~4个月。在适应证方面,Faricimab主要用于治疗RVO引起的黄斑水肿[47],而GC通常用于炎症性疾病或DME[48]。对于RVO的不同分型,Faricimab在复杂性CRVO的治疗中可能更为有效,而在BRVO治疗中,两者在减轻黄斑水肿方面的疗效大致相当。因此,医生可以根据患者的具体病情和需求选择最合适的治疗方案。
5 Faricimab治疗RVO的临床研究
5.1 临床前研究
临床前研究进一步证明了Ang-2在视网膜疾病中的关键作用,尤其是在细胞因子诱导的血管渗漏过程。Faricimab展现出同时抑制VEGF-A和Ang-2的能力,有效保护人血管内皮细胞免受损伤[47]。在自发性脉络膜新生血管(spontaneous choroidal neovascularization, CNV)JR5558小鼠模型中,相较于单独抑制VEGF或Ang-2,Faricimab通过同时抑制VEGF和Ang-2的活性,显著降低了血管通透性和新生血管病变,并减少了视网膜水肿、神经元凋亡和巨噬细胞浸润[49]。此外,在内毒素诱导的葡萄膜炎小鼠模型中,Faricimab也显示出明显的抗炎特性[50]。另一项研究表明,玻璃体腔内注射Faricimab相较于Ran在减少渗漏病变方面具有更显著的效果,同时还有效减轻了激光诱导的CNV形成[36]。
5.2 临床研究
截至目前,已经进行的两项关键Ⅲ 期临床试验——BALATON(评估 Faricimab 在BRVO引起黄斑水肿治疗中的有效性与安全性)和 COMINO(评估 Faricimab 在CRVO引起黄斑水肿治疗中的有效性与安全性),旨在全面验证 Faricimab 的治疗效果与安全性[27,51]。COMINO研究是一项随机、多中心、双盲的Ⅲ期临床试验,专门评估Faricimab在治疗RVO相关黄斑水肿中的疗效与安全性。与COMINO类似,BALATON研究同样为Ⅲ期临床试验,设计上也旨在评估Faricimab对RVO相关黄斑水肿的治疗效果。在BALATON和COMINO两项试验中,共纳入1 282例患者,其中BALATON试验纳入了553例患者,COMINO试验纳入了729例患者。参与者被随机分配至Faricimab 6.0 mg组或Aflibercept 2.0 mg组,每4周注射1次,持续6次。试验结果显示,在每4周接受Faricimab治疗长达24周后,Faricimab组患者的视力改善更为显著。另一项研究也证实Faricimab不仅能够调节新生血管的通透性,还能显著减轻黄斑水肿,改善患者的视力和整体眼部健康[52]。
尽管目前针对Faricimab治疗RVO的研究较为有限,但通过分析与RVO病理机制相似的疾病,如DME和nAMD的治疗效果,已观察到患者在使用Faricimab后BCVA显著提高,中心黄斑厚度(central macular thickness, CMT)明显降低,解剖和功能参数均有改善,并在治疗过程中展现出Faricimab良好的耐受性和安全性[52-54]。这些临床研究结果进一步支持了Faricimab在RVO治疗中的潜在优势,为其在视网膜血管疾病中的应用提供了重要的临床证据。
6 展望
作为首个同时抑制VEGF-A和Ang-2的双特异性抗体,Faricimab通过减少血管渗漏和新生血管的形成,展现出相较于传统抗VEGF疗法的潜在优势[23,38,40]。其双重作用机制为RVO等视网膜血管疾病的治疗带来了新的希望和潜力[34]。目前,FDA已批准Faricimab用于RVO的治疗,这进一步表明了其在临床试验中的安全性和有效性。在BALATON和COMINO两项关键临床试验中,Faricimab展现出与Aflibercept相似的视力改善效果,为其疗效和耐受性提供了坚实的证据[27,51]。此外,Faricimab在其他适应证中表现出的较长给药间隔显著减少了治疗频次和患者门诊次数,对于长期依赖注射治疗的患者尤其重要,能够有效减轻医疗负担并提高患者的依从性[39,55]。Faricimab 的独特机制为传统治疗 RVO 的方法提供了重要补充,可能在未来改变众多患者的治疗格局。
展望未来,尽管Faricimab在RVO治疗中展现了显著的临床潜力,但当前关于其在RVO应用的临床数据和实验研究仍然相对有限。未来研究应聚焦于通过大规模、随机对照的临床试验,更深入地评估Faricimab在RVO相关黄斑水肿治疗中的长期疗效和安全性。此外,针对Faricimab对不同RVO亚型(如CRVO 和 BRVO)的具体疗效,还需进一步明确其在改善视力和减少黄斑水肿方面的实际效果。Faricimab未来的研究方向还可扩展至其他血管异常相关的眼科疾病,如中心性浆液性脉络膜视网膜病变(central serous chorioretinopathy, CSCR)、玻璃体黄斑牵拉综合征(vitreo-macular traction syndrome, VMT)和新生儿视网膜病变(retinopathy of prematurity, ROP)等。同时,重点研究Faricimab与传统抗VEGF药物、GC及其他治疗方式联合应用在RVO疾病治疗中的可行性和疗效,尤其是在单一疗法效果不佳或患者病理特征复杂的情况下,联合治疗有望显著改善疗效,减少复发并延长治疗间隔期。不仅如此,未来研究还需关注Faricimab的经济效益和社会效益,通过合理的医疗政策与保障措施,进一步提升其可及性。随着相关研究的不断推进,Faricimab在眼科治疗领域的前景将愈加广阔,并有望推动RVO疾病管理更加精准化和个性化地发展。
利益冲突
所有作者均声明不存在利益冲突。开放获取声明
本文适用于知识共享许可协议(Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。
基金
暂无基金信息
参考文献
1、Larrousse Morellón M, López Loureiro Y, Ruiz Bilbao S. Retinal venous occlusion and its association with atherosclerotic vascular disease[J]. Med Clin, 2024, 163(4): 199-207. DOI: 10.1016/j.medcli.2024.01.048.
2、Gomel N, D’Aloisio R, Wattad A, et al. Good Initial Visual Acuity in Patients with Macular Edema due to Retinal Vein Occlusion - Management and Outcomes[J]. Retina, 2024. DOI: 10.1097/IAE.0000000000004244.
3、Yau JWY, Lee P, Wong TY, et al. Retinal vein occlusion: an approach to diagnosis, systemic risk factors and management[J]. Intern Med J, 2008, 38(12): 904-910. DOI: 10.1111/j.1445-5994.2008.01720.x.
4、Kuhli-Hattenbach C, Scharrer I, Lüchtenberg M, et al. Selektives thrombophilies creening junger patienten mit venösen retinalen Gefässverschlüssen [Selective thrombophilia screening of young patients with retinal vein occlusion][J]. Klin Monbl Augenheilkd, 2009 ,226(9):768-73. DOI: 10.1055/s-0028-1109195.
5、Valeriani E, Paciullo F, Porfidia A, et al. Antithrombotic treatment for retinal vein occlusion: a systematic review and meta-analysis[J]. J Thromb Haemost, 2023, 21(2): 284-293. DOI: 10.1016/j.jtha.2022.10.003.
6、McIntosh RL, Rogers SL, Lim L, et al. Natural history of central retinal vein occlusion: an evidence-based systematic review[J]. Ophthalmology, 2010, 117(6): 1113-1123.e15. DOI: 10.1016/j.ophtha.2010.01.060.
7、Porta M, Striglia E. Intravitreal anti-VEGF agents and cardiovascular risk[J]. Intern Emerg Med, 2020, 15(2): 199-210. DOI: 10.1007/s11739-019-02253-7.
8、Rehak M, Storch MW, Hattenbach LO, et al. Ischemia and laser photocoagulation in retinal vein occlusion[J]. Ophthalmologie, 2022, 119(11): 1121-1128. DOI: 10.1007/s00347-022-01750-z.
9、Arepalli S, Wykoff CC, Abraham JR, et al. Longitudinal analysis of aqueous humour cytokine expression and OCT-based imaging biomarkers in retinal vein occlusions treated with anti-vascular endothelial growth factor therapy in the IMAGINE study[J]. Eye, 2023, 37(9): 1928-1935. DOI: 10.1038/s41433-022-02265-2.
10、Kuriyama A, Nakamura S, Inokuchi Y, et al. The protective effect of anti-VEGF-A/Ang-2 bispecific antibody on retinal vein occlusion model mice[J]. Eur J Pharmacol, 2024, 976: 176691. DOI: 10.1016/j.ejphar.2024.176691.
11、Inagaki S, Shimazawa M, Otsu W, et al. Creation of retinal vein occlusion model in cynomolgus monkeys and determination of its pathological features[J]. Curr Neurovasc Res, 2021, 18(1): 123-133. DOI: 10.2174/1567202617999200831151118.
12、Heier JS, Singh RP, Wykoff CC, et al. The angiopoietin/tie pathway in retinal vascular diseases: a review[J]. Retina, 2021, 41(1): 1-19. DOI: 10.1097/IAE.0000000000003003.
13、Joussen AM, Ricci F, Paris LP, et al. Angiopoietin/Tie2 signalling and its role in retinal and choroidal vascular diseases: a review of preclinical data[J]. Eye Lond Engl, 2021, 35(5): 1305-1316. DOI: 10.1038/s41433-020-01377-x.
14、Zhang Y, Liu J, Zou T, et al. DPSCs treated by TGF-β1 regulate angiogenic sprouting of three-dimensionally co-cultured HUVECs and DPSCs through VEGF-Ang-Tie2 signaling[J]. Stem Cell Res Ther, 2021, 12(1): 281. DOI: 10.1186/s13287-021-02349-y.
15、Regula JT, Lundh von Leithner P, Foxton R, et al. Targeting key angiogenic pathways with a bispecific CrossMAb optimized for neovascular eye diseases[J]. EMBO Mol Med, 2016, 8(11): 1265-1288. DOI: 10.15252/emmm.201505889.
16、Oh TR, Han KD, Choi HS, et al. Hypertension as a risk factor for retinal vein occlusion in menopausal women: a nationwide Korean population-based study[J]. Medicine, 2021, 100(43): e27628. DOI: 10.1097/MD.0000000000027628.
17、Pinna A, Porcu T, Marzano J, et al. Mean platelet volume, red cell distribution width, and complete blood cell count indices in retinal vein occlusions[J]. Ophthalmic Epidemiol, 2021, 28(1): 39-47. DOI: 10.1080/09286586.2020.1791349.
18、Şahin M, Elbey B, Şahin A, et al. Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in retinal vein occlusion[J]. Clin Exp Optom, 2020, 103(4): 490-494. DOI: 10.1111/cxo.13008.
19、Khanani AM, Russell MW, Aziz AA, et al. Angiopoietins as potential targets in management of retinal disease[J]. Clin Ophthalmol, 2021, 15: 3747-3755. DOI: 10.2147/OPTH.S231801.
20、Giancipoli E, Guglielmi A, Bux AV, et al. Real-world outcomes of a loading phase with intravitreal faricimab in neovascular age-related macular degeneration (n-AMD) and diabetic macular edema (DME)[J]. Ophthalmol Ther, 2024, 13(8): 2163-2184. DOI: 10.1007/s40123-024-00980-5.
21、Jørstad ØK, Foss S, Gjølberg TT, et al. Pharmaceutical compounding and storage of faricimab in a syringe for intravitreal injection do not impair stability and bi-specific binding properties[J]. Int J Retina Vitreous, 2023, 9(1): 65. DOI: 10.1186/s40942-023-00507-3.
22、US FDA. VABYSMO™ (faricimab-svoa) injection, for intravitreal use - US prescribing information. 2022. https://www.fda.gov. Accessed 4 Mar 2022.
23、Glassman AR, Wells JA 3rd, Josic K, et al. Five-year outcomes after initial aflibercept, bevacizumab, or ranibizumab treatment for diabetic macular edema (protocol T extension study)[J]. Ophthalmology, 2020, 127(9): 1201-1210. DOI: 10.1016/j.ophtha.2020.03.021.
24、Ciulla TA, Pollack JS, Williams DF. Visual acuity outcomes and anti-VEGF therapy intensity in diabetic macular oedema: a real-world analysis of 28 658 patient eyes[J]. Br J Ophthalmol, 2021, 105(2): 216-221. DOI: 10.1136/bjophthalmol-2020-315933.
25、Canonica J, Uhles S, Foxton R, et al. VEGF-A/Ang-2 neutralization causes sustained prevention of subretinal macrophage infiltration in a mouse model of spontaneous choroidal neovascularization [J]. Invest Ophthalmol Vis Sci, 2021, 62(8): 274.
26、Linder M, Foxton R, Uhles S, et al. Simultaneous Ang-2/VEGF-A inhibition prevents subretinal fibrosis progression in preclinical mouse models of choroidal neovascularization (CNV) [J]. Invest Ophthalmol Vis Sci, 2021, 62(8): 349.
27、Tadayoni R, Paris LP, Danzig CJ, et al. Efficacy and Safety of Faricimab for Macular Edema due to Retinal Vein Occlusion: 24-Week Results from the BALATON and COMINO Trials[J]. Ophthalmology, 2024, 131(8): 950-960. DOI: 10.1016/j.ophtha.2024.01.029.
28、Ferro Desideri L, Traverso CE, Nicolò M, et al. Faricimab for the treatment of diabetic macular edema and neovascular age-related macular degeneration[J]. Pharmaceutics, 2023, 15(5): 1413. DOI: 10.3390/pharmaceutics15051413.
29、Panos GD, Lakshmanan A, Dadoukis P, et al. Faricimab: transforming the future of macular diseases treatment - A comprehensive review of clinical studies[J]. Drug Des Devel Ther, 2023, 17: 2861-2873. DOI: 10.2147/DDDT.S427416.
30、Sghaier R, Perus M, Cornebise C, et al. Resvega, a nutraceutical preparation, affects NFκB pathway and prolongs the anti-VEGF effect of bevacizumab in undifferentiated ARPE-19 retina cells[J]. Int J Mol Sci, 2022, 23(19): 11704. DOI: 10.3390/ijms231911704.
31、Nicolò M, Ferro Desideri L, Vagge A, et al. Faricimab: an investigational agent targeting the Tie-2/angiopoietin pathway and VEGF-A for the treatment of retinal diseases[J]. Expert Opin Investig Drugs, 2021, 30(3): 193-200. DOI: 10.1080/13543784.2021.1879791.
32、Campa C, Alivernini G, Bolletta E, et al. Anti-VEGF therapy for retinal vein occlusions[J]. Curr Drug Targets, 2016, 17(3): 328-336. DOI: 10.2174/1573399811666150615151324.
33、Sahni J, Patel SS, Dugel PU, et al. Simultaneous inhibition of angiopoietin-2 and vascular endothelial growth factor-a with faricimab in diabetic macular edema: boulevard phase 2 randomized trial[J]. Ophthalmology, 2019, 126(8): 1155-1170. DOI: 10.1016/j.ophtha.2019.03.023.
34、Baumal CR. Wet age-related macular degeneration: treatment advances to reduce the injection burden[J]. Am J Manag Care, 2020, 26(5 Suppl): S103-S111. DOI: 10.37765/ajmc.2020.43435.
35、Deissler HL, Rehak M, Lytvynchuk L. VEGF-A165a and angiopoietin-2 differently affect the barrier formed by retinal endothelial cells[J]. Exp Eye Res, 2024, 247: 110062. DOI: 10.1016/j.exer.2024.110062.
36、Penha FM, Masud M, Khanani ZA, et al. Review of real-world evidence of dual inhibition of VEGF-A and ANG-2 with faricimab in NAMD and DME[J]. Int J Retina Vitreous, 2024, 10(1): 5. DOI: 10.1186/s40942-024-00525-9.
37、Canonica J, Foxton R, Garrido MG, et al. Delineating effects of angiopoietin-2 inhibition on vascular permeability and inflammation in models of retinal neovascularization and ischemia/reperfusion[J]. Front Cell Neurosci, 2023, 17: 1192464. DOI: 10.3389/fncel.2023.1192464.
38、Khanani AM, Russell MW, Aziz AA, et al. Angiopoietins as potential targets in management of retinal disease[J]. Clin Ophthalmol, 2021, 15: 3747-3755. DOI: 10.2147/OPTH.S231801.
39、Shughoury A, Bhatwadekar A, Jusufbegovic D, et al. The evolving therapeutic landscape of diabetic retinopathy[J]. Expert Opin Biol Ther, 2023, 23(10): 969-985. DOI: 10.1080/14712598.2023.2247987.
40、Larsen HO, Grauslund J, Vergmann AS. Efficacy, durability and safety of faricimab in neovascular age-related macular degeneration and diabetic macular oedema: lessons learned from registration trials[J]. Ophthalmol Ther, 2023, 12(5): 2253-2264. DOI: 10.1007/s40123-023-00753-6.
41、FDA accepts application for Roche's faricimab for the treatment of neovascular age-related macular degeneration (nAMD) and diabetic macular edema (DME) [EB/OL].[2024-08-06].https://www.roche.com, 2022.
42、Ishida S, Chen SJ, Murata T, et al. Efficacy, durability, and safety of faricimab in patients from Asian countries with diabetic macular edema: 1-year subgroup analysis of the phase III YOSEMITE and RHINE trials[J]. Asia Pac J Ophthalmol, 2023, 12(5): 451-459. DOI: 10.1097/APO.0000000000000634.
43、Li X, Cao X, Zhao M, et al. The changes of irisin and inflammatory cytokines in the age-related macular degeneration and retinal vein occlusion[J]. Front Endocrinol, 2022, 13: 861757. DOI: 10.3389/fendo.2022.861757.
44、Kurtul BE, Çakmak Aİ, Elbeyli A, et al. Assessment of platelet-to-lymphocyte ratio in patients with retinal vein occlusion[J]. Ther Adv Ophthalmol, 2020, 12: 2515841420971949. DOI: 10.1177/2515841420971949.
45、Zhao MW, Miao H. Whole course management is the key to retinal vein occlusion[J]. Zhonghua Yan Ke Za Zhi, 2020, 56(4): 246-249. DOI: 10.3760/cma.j.cn112142-20200207-00052.
46、Covello G, Maglionico MN, Figus M, et al. Evaluation of anatomical and tomographic biomarkers as predictive visual acuity factors in eyes with retinal vein occlusion treated with dexamethasone implant[J]. J Clin Med, 2024, 13(15): 4533. DOI: 10.3390/jcm13154533.
47、Wei XL, Hu KK, Du YR, et al. Research progress of novel bispecific monoclonal antibody Faricimab in the treatment of diabetic macular edema and age-related macular degeneration[J]. Int Eye Sci, 2023, 23(10): 1677-1682. DOI: 10.3980/j.issn.1672-5123.2023.10.15.
48、Karimi S, Karrabi N, Hassanpour K, et al. The additive effect of intravitreal dexamethasone combined with bevacizumab in refractory diabetic macular edema[J]. J Fr Ophtalmol, 2023, 46(9): 1019-1029. DOI: 10.1016/j.jfo.2023.04.001.
49、眼科双特异性抗体:罗氏faricimab治疗新生血管年龄相关性黄斑变性(NAMD)3期临床成功[EB/OL](2021-01-28)。https: //news. bioon. com/ article/ 577de10506b2. html
50、Iwata D, Leithner PLV, Ng Y, et al. Anti-VEGF/Ang2 bi-specific antibody ameliorates endotoxin-induced uveitis in mice[J]. Investig Ophthalmol Vis Sci, 2014, 55: 2354.
51、Hattenbach LO, Abreu F, Arrisi P, et al. BALATON and COMINO: phase III randomized clinical trials of faricimab for retinal vein occlusion: study design and rationale[J]. Ophthalmol Sci, 2023, 3(3): 100302. DOI: 10.1016/j.xops.2023.100302.
52、Toto L, Formenti F, Ruggeri ML, et al. Efficacy and durability of faricimab in Naïve eyes with neovascular age-related macular degeneration[J]. Ophthalmic Res, 2024, 67(1): 528-536. DOI: 10.1159/000540194.
53、Aldhanhani AA, Azzam OA, AlAli SH, et al. Switch to faricimab after initial treatment with aflibercept in eyes with neovascular age-related macular degeneration[J]. Int Ophthalmol, 2024, 44(1): 369. DOI: 10.1007/s10792-024-03297-1.
54、Todoroki T, Takeuchi J, Ota H, et al. Aqueous humor cytokine analysis in age-related macular degeneration after switching from aflibercept to faricimab[J]. Invest Ophthalmol Vis Sci, 2024, 65(11): 15. DOI: 10.1167/iovs.65.11.15.
55、Mansour SE, Browning DJ, Wong K, et al. The evolving treatment of diabetic retinopathy[J]. Clin Ophthalmol, 2020, 14: 653-678. DOI: 10.2147/OPTH.S236637.