年龄相关性黄斑变性中视网膜色素上皮脱离的分型及影像学研究进展
关键词
摘要
全文
文章亮点
1. 关键发现
2. 已知与发现
3. 意义与改变
视网膜色素上皮脱离(pigment epithelial detachment, PED)是指视网膜色素上皮(retinal pigment epithelium, RPE)与Bruch膜之间的解剖分离。继Gass等[1]于1966年首次提出浆液性PED的概念以来,PED逐渐引起临床工作者们的广泛关注,越来越多的研究揭示了PED的多样影像特征和亚型。PED是年龄相关性黄斑变性(age-related macular degeneration, AMD)的常见体征,常与视力预后不良相关。在新生血管性AMD(neovascular AMD, nAMD)中,PED的发生率高达80.1%[2]。AMD相关的PED存在多种亚型,不同亚型在发病机制、影像特征及预后上存在显著差异。然而,目前PED的分型繁多、概念交叉,缺乏统一标准,现有分型并不能完全满足临床实践需求。对PED进行标准化分型,有助于指导治疗方案的选择和疗效评估[3]。本文旨在通过回顾国内外AMD相关PED的文献,系统总结PED分型、其多模式影像表现及影像新进展,以期为PED的诊治提供更科学的依据。
1 视网膜色素上皮脱离分型的演变:从单一视角到多模式影像
PED分型可根据多种影像学方法,包括眼底荧光素血管造影(fundus fluorescein angiography, FFA)、眼底吲哚菁绿血管造影(indocyanine green angiography, ICGA)、光学相干断层扫描(optical coherence tomography, OCT)及多模式影像联合等。随着影像技术的革新,研究者们对PED的认识不断加深,分型体系也在逐步演变。表1。
表 1 AMD 相关的 PED 分型汇总
Table 1 Summary of PED subtypes associated with AMD
|
研究 |
研究样本量 |
分型依据 |
分型 |
|
AMD相关的PED |
|||
|
Casswell等[4],1985年 |
57 |
FFA |
早期强荧光(圆顶状PED)、晚期强荧光(圆顶状PED)、微弱强荧光(多灶融合的玻璃膜疣型浅PED)、不规则荧光(PED内强弱荧光混合) |
|
Poliner等[5],1986年 |
93 |
FFA |
非血管性浆液性、混浊性、非血管性血液性、血管性血液性PED |
|
Yannuzzi等[6],1994年 |
244 |
ICGA |
非血管性浆液性、血管性PED |
|
孙祖华等[8],2006年 |
31 |
FFA |
浆液性、血液性、浆血性PED |
|
|
|
ICGA |
CNV-PED、PCV-PED、CNV合并PCV-PED、非血管性PED |
|
67 |
ICGA |
CNV-PED、PCV-PED、RAP-PED、PCV/CNV-PED(指无法鉴别PCV与CNV的病例)、非血管性浆液性PED |
|
|
Baba等[27],2012年 |
35 |
FFA |
非血管性PED、PCV-PED、隐匿性CNV |
|
Suzuki[28]等,2014年 |
141 |
FFA |
浆液性、纤维血管性、血液性PED |
|
De等[29],2018年 |
94 |
ICGA |
浆液为主性(血管性成分<50%)、血管为主性(血管性成分≥50%)PED |
|
Lee等[11],2012年 |
33 |
OCT |
浆液性、纤维血管性、玻璃膜疣性PED |
|
Inoue等[30],2013年 |
56 |
OCT |
浆液性、纤维血管性、浆液性+纤维血管混合性、血液性PED |
|
Hoerster等[31],2014年 |
75 |
OCT |
浆液性、纤维血管性PED |
|
Or等[12],2016年 |
48 |
OCT |
浆液性、纤维血管性、玻璃膜疣性PED |
|
Zinkernagel等[32],2016年 |
26 |
OCT |
浆液性、纤维血管性PED |
|
Lee等[33],2017年 |
61 |
OCT |
浆液性、纤维血管性PED |
|
Hara等[14],2019年 |
365 |
OCT |
浆液性、纤维血管性、血液性PED |
|
Kang等[13],2019年 |
53 |
OCT |
玻璃膜疣性、浆液性、血管性(尖峰状PED、平坦PED)、混合性PED |
|
Kim等[34],2020年 |
83 |
OCT |
纤维血管性、非纤维血管性PED |
|
Shu等[15],2023年 |
159 |
OCT |
浆液性、纤维血管性、玻璃膜疣性、血液性PED |
|
Bindewald-Wittich等[16],2023年 |
66 |
OCT |
浆液性、血管性、玻璃膜疣性、血液性、混合性PED |
|
Punjabi等[35],2013年 |
64 |
OCT |
实性、空性、混合性PED |
|
Broadhead等[36],2015年 |
46 |
OCT |
实性、空性、混合性PED |
|
Tyagi等[17],2018年 |
50 |
OCT |
实性、空性、混合性PED |
|
De等[29],2018年 |
94 |
OCT |
空性/斑驳性、致密性PED |
|
Diaconita等[37],2019年 |
36 |
OCT |
实性、空性、混合性PED |
|
Ulusoy等[18],2021年 |
58 |
OCT |
实性、空性、混合性PED |
|
Tan等[19],2016年 |
113 |
多模式 |
非血管性(玻璃膜疣性、浆液性)PED、 |
|
Sauer等[38],2019年 |
46 |
多模式 |
浆液性、血管性、玻璃膜疣性、血液性、混合性PED |
|
AMD相关的血管性PED |
|||
|
孙祖华等[8],2006年 |
31 |
ICGA |
CNV-PED、PCV-PED、CNV合并PCV-PED |
|
Lee等[9],2007年 |
67 |
ICGA |
CNV-PED、PCV-PED、RAP-PED、PCV/CNV-PED(指无法鉴别PCV与CNV的病例) |
|
Kang等[13],2019年 |
53 |
OCT |
尖峰状PED、平坦PED |
|
Panos等[20],2013年 |
62 |
多模式 |
纤维血管性、血管性浆液性PED |
|
Chan等[21],2018年 |
36 |
多模式 |
纤维血管性、血管性浆液性PED |
|
李娟娟等[24],2018年 |
96 |
多模式 |
CNV-PED、PCV-PED、RAP-PED |
|
Tan等[19],2016年 |
113 |
多模式 |
1型NV-PED、3型NV-PED |
|
Chan等[23],2020年 |
36 |
多模式 |
1型NV-PED、3型NV-PED |
|
AMD相关的浆液性PED |
|||
|
Karadimas等[39],2005年 |
13 |
FFA+ICGA |
血管性浆液性、非血管性浆液性PED |
|
Arora等[40],2011年 |
19 |
多模式 |
血管性浆液性、非血管性浆液性PED |
|
Penha等[41],2012年 |
58 |
多模式 |
血管性浆液性、非血管性浆液性PED |
|
Su等[25],2022年 |
57 |
ICGA |
非血管性浆液性PED:渗出性、潴留性、混合性 |
AMD:年龄相关性黄斑变性;PED:色素上皮脱离;FFA:眼底荧光素血管造影;ICGA:吲哚菁绿血管造影;CNV:脉络膜新生血管;PCV:息肉状脉络膜血管病变;RAP:视网膜血管瘤样增生;OCT:光学相干断层扫描;NV:新生血管。
AMD: age-related macular degeneration; PED: pigment epithelial detachment; FFA: fundus fluorescein angiography; ICGA: indocyanine green angiography; CNV: choroidal neovascularization; PCV: polypoidal choroidal vasculopathy; RAP: retinal angiomatous proliferation; OCT: optical coherence tomography; NV: neovascularization.
1.1 血管造影时代:初探视网膜色素上皮脱离影像分型
1985年,Casswell等[4]依据 PED的FFA影像特征,将年龄大于55岁PED患者的PED分为早期强荧光(圆顶状PED)、晚期强荧光(圆顶状PED)、微弱强荧光(多灶融合的玻璃膜疣型浅PED)、不规则荧光(PED内强弱荧光混合)4种类型,并对不同分型的患者进行了至少1年的随访,结果提示除了玻璃膜疣型,其余PED均可能发生视网膜下新生血管(neovascularization, NV)。PED是否伴有NV对视力预后具有重要影响。1986年,Poliner等[5]进一步基于FFA中新生血管的特征将AMD相关的PED分为非血管性浆液性PED、混浊PED、非血管性血液性PED、血管性血液性PED。由于FFA使用的短波长蓝光穿透力有限,PED内容物或视网膜下出血可能遮挡脉络膜新生血管(choroidal neovascularization, CNV)的显影,因此,这一时期的PED分型在鉴别血管特征方面存在局限性。ICGA以红外光作为激发光,具有更强的穿透力,使得在PED存在的情况下能更清晰地勾画出下方的新生血管形态[6-7]。通过ICGA或ICGA联合FFA,研究者们将PED分为非血管性PED和血管性PED,并进一步对血管性PED进行分型[6, 8-9]。Lee等[9]则根据新生血管类型将血管性PED分为息肉状脉络膜血管病变(polypoidal choroidal vasculopathy,PCV)相关的PED(PCV-PED)、CNV相关的PED(CNV-PED)、视网膜血管瘤样增生(retinal angiomatous proliferation, RAP)相关的PED(RAPPED)及PCV/CNV-PED(指无法鉴别PCV与CNV的病例)。2006年,文峰团队孙祖华等[8]根据FFA将PED分为浆液性、血液性、浆血性PED,根据ICGA将PED分为非血管性PED及CNV-PED、PCV-PED、CNV合并PCVPED,指出FFA检查在显示PED的位置及范围方面的优势,但在分辨PED下是否存在CNV的能力不及ICGA,强调ICGA在诊断CNV及指导治疗中的重要性,为我国AMD的临床诊治提供了重要依据。基于染料血管造影的PED分型初步揭示了不同类型PED的影像特征及其潜在的病理机制,但受限于成像技术,PED中的内容物尚未能全面展现。
1.2 光学相干断层扫描时代:划时代揭示视网膜色素上皮脱离内部结构
OCT的应用为PED分型带来了划时代的突破,尤其随着增强深度成像OCT(enhanced depth imaging OCT, EDI-OCT)的发展,使研究者得以清晰地观察PED的断层结构,进一步推动了AMD相关的PED分型细化[10]。根据OCT影像中PED内容物的差异,研究者们将PED分为浆液性、纤维血管性、玻璃膜疣性PED[11–13],或浆液性、纤维血管性、血液性PED[14],或浆液性、纤维血管性、玻璃膜疣性、血液性PED[15-16]。此外,也有研究根据OCT上PED内容物的反射特性,将AMD相关的PED分为空性、实性、混合性PED[17-18]。Lee等[11]则通过A扫描(A-scan)图像的平均反射强度和标准差(平均反射强度<30为浆液性PED,30≤平均反射强度<60或平均反射强度≥30且标准差≥30为纤维血管性PED,平均反射强度≥60且标准差<30为玻璃膜疣性PED)实现了PED的自动分型与定量化,为AMD晚期进展风险的预测提供了技术支持。1.3 多模式影像时代:融合视网膜色素上皮脱离断层结构及血管特性
多模式影像结合了OCT及血管造影的影像特征,可兼顾PED的断层结构和血管特性,实现了血管性与非血管性PED的精准鉴别。近年来的PED研究多依据多模式影像结果进行分型。Tan等[19]通过多模式影像将AMD相关的PED分为非血管性PED与血管性PED,非血管性PED包括玻璃膜疣性PED和浆液性PED。Panos等[20]和Chan等[21]通过多模式影像将血管性PED按内容物进一步分为纤维血管性PED及血管性浆液性PED。2010年,Bailey Freund等[22]借助OCT技术的应用及多模式成像的发展,提出AMD中CNV的新分型建议,将AMD相关新生血管分为1型NV、2型NV、3型NV(即RAP)。基于此分型,Tan等[19]和Chan等[23]又将血管性PED按新生血管类型分为1型NV-PED与3型NV-PED。2018年,李娟娟等[24]应用多模式影像将PED分为CNVPED、PCV-PED、RAP-PED,同样细化了基于新生血管类型的PED分型。综合应用多种影像学技术的方法,为PED的全面诊断和精准分型提供了更加可靠的依据,有助于优化个体化治疗策略并提示患者的预后。除血管性PED外,2022年文峰团队Su等[25]在老年非血管性浆液性PED分型中取得突破进展。根据ICGA影像特征,即是否存在ICGA晚期年龄相关性弱荧光点(age-related scattered hypofluorescent spots on late-phase indocyanine green angiography, ASHS-LIA)、脉络膜血管高通透性(choroidal vascular hyperpermeability, CVH),或同时存在ASHS-LIA与CVH,首次将老年非血管性浆液性PED分为潴留性、渗漏性、混合性PED。结果表明,绝大多数老年非血管性浆液性PED的发生、发展与ASHS-LIA的特征密切相关,揭示了ASHS-LIA所代表的与年龄相关的Bruch脂质屏障可能在其发病机制中发挥重要作用,可作为新的潜在治疗靶点[25-26]。2 视网膜色素上皮脱离主要分型的临床及影像学表现
PED的分型体系复杂多样,本部分将重点总结代表性PED亚型的多模式影像特征。表2、3。
表 2 AMD 相关的玻璃膜疣性及浆液性 PED 的多模式影像特征 [1, 5, 6, 19, 39, 42–44]
Table 2 Multimodal imaging features of drusenoid PED and serous PED in AMD[1, 5, 6, 19, 39, 42–44]
|
检查方式 |
玻璃膜疣性PED |
浆液性PED |
|
检眼镜 |
边界光滑或呈圆齿状的黄色病灶,表面可见局灶RPE色素增殖 |
透明或橘色的边界清晰的穹顶样RPE隆起 |
|
SW-AF |
均质的等自发荧光或稍强自发荧光 |
均质的稍强自发荧光 |
|
FFA |
早期呈稍强荧光,晚期染料着染 |
早期可见RPE下迅速充盈的强荧光灶,晚期形成边界清晰的、均质的类圆形强荧光 |
|
ICGA |
全程弱荧光 |
全程弱荧光 |
|
OCT |
PED呈分叶状或波浪状,RPE下为均质的稍高反射 |
边界清晰的穹顶样RPE隆起,其下伴均质的低反射 |
|
OCTA |
未见异常血流信号 |
未见异常血流信号 |
PED:色素上皮脱离;RPE:视网膜色素上皮;SW-AF:短波长自发荧光;FFA:眼底荧光素血管造影;ICGA:吲哚菁绿血管造影;OCT:光学相干断层扫描;OCTA:光学相干断层扫描血管成像。
PED: pigment epithelial detachment; RPE: retinal pigment epithelium; SW-AF: shortwave-autofluorescence; FFA: fundus fluorescein angiography; ICGA: indocyanine green angiography; OCT: optical coherence tomography; OCTA: optical coherence tomography angiography.
2.1 玻璃膜疣性视网膜色素上皮脱离
玻璃膜疣性PED通常表现为边界光滑或呈圆齿状的黄色病灶,表面可见局灶性RPE色素增殖[42],FFA造影晚期可见染料着染[19, 42],ICGA上呈全程弱荧光[19, 42-43]。OCT可见PED呈分叶状或波浪状,RPE下为均质的稍高反射,与浆液性或血管性PED相比,玻璃膜疣性PED的直径和高度更小[19]。OCT血管成像(OCT angiography, OCTA)中PED内未见明显异常的血流信号[19]。
表 3 AMD 相关的血管性 PED 的多模式影像特征 [6,10,19,47,49–56]
Table3 Multimodal imaging features of vascular PED in AMD[6,10,19,47,49–56]
|
1型NV-PED |
PCV-PED |
3型NV-PED |
|
|
检眼镜 |
表面不规则的RPE隆起 |
一个或多个橘色视网膜下圆形隆起,可伴视网膜下或RPE下大量出血 |
黄白色或橘色隆起,可伴渗出及视网膜内或视网膜下出血 |
|
SW-AF |
RPE色素聚集的区域表现为强自发荧光,可能伴有弱自发荧光边界 |
息肉状病灶表现为弱自发荧光,周围伴强自发荧光环,与其相连的分支新生血管网表现为颗粒状弱自发荧光 |
瘤样增生病灶常呈弱自发荧光,少见强或强弱自发荧光,局部萎缩时 呈弱自发荧光
|
|
FFA |
早期不规则斑点状强荧光,晚期染料渗漏,病灶边界欠清 |
早期不规则斑点状强荧光,晚期染料渗漏,病灶边界欠清,常伴出血性遮蔽荧光 |
早期针尖状渗漏,有时可见视网膜内异常血管复合体,晚期斑点状强荧光 |
|
ICGA |
焦点状或斑状强荧光伴轻渗漏 |
新生血管网及其末端扩张的息肉状病灶性强荧光伴渗漏 |
焦点状强荧光伴染料渗漏 |
|
OCT |
表面不平、形状不规则的PED内含不均质的高反射及低反射物质 |
特征性尖峰状PED、RPE下环状病变、复杂或多叶PED、双层征等 |
部分可观察到PED上方局灶RPE信号中断,中断处可见连接RPE下区域与视网膜内区域的连续漏斗状高反射病灶 |
|
OCTA |
PED内异常血流信号 |
息肉状病灶管腔及双层征区域异常血流信号 |
异常血流信号与OCT上的漏斗状高反射及FFA上针尖状渗漏点相对应 |
PED:色素上皮脱离;PCV:息肉状脉络膜血管病变;NV:新生血管;RPE:视网膜色素上皮;SW-AF:短波长自发荧光;FFA:眼底荧光素血管造影;ICGA:吲哚菁绿血管造影;OCT:光学相干断层扫描;OCTA:光学相干断层扫描血管成像。
PED: pigment epithelial detachment; PCV: polypoidal choroidal vasculopathy; NV: neovascularization; RPE: retinal pigment epithelium; SW-AF: shortwave-autofluorescence; FFA: fundus fluorescein angiography; ICGA: indocyanine green angiography; OCT: optical coherence tomography; OCTA: optical coherence tomography angiography.
2.2 浆液性视网膜色素上皮脱离
单纯的浆液性PED通常表现为透明或橘色的边界清晰的穹顶样RPE隆起[1]。FFA早期可见RPE下迅速充盈的强荧光,晚期染料积存,形成边界清晰的、均质的类圆形强荧光[5-6],ICGA为均质的全程弱荧光,晚期未见PED下血管渗漏、着染的迹象[6,44]。OCT上浆液性PED表现为边界清晰的穹顶样RPE隆起,其下伴均质的低反射信号。部分浆液性PED边缘可发现切迹,Gass等[45]认为FFA上浆液性PED边缘出现的缺口提示存在隐匿性CNV,Sato等[46]在浆液性PED患者的OCT断层图像中发现了PED切迹,认为这是RPE下存在CNV的重要诊断标志。含有浆液的血管性PED的影像学表现见2.3血管性PED部分。2.3 血管性视网膜色素上皮脱离
不同NV类型所致的血管性PED表现不同。见表3。2010年,Bailey Freund等[22]基于多模式影像特征将AMD相关的NV分为1型、2型、3型NV。1型NV定义为RPE下的新生血管,PCV被认为是一种特殊的1型NV,两者均与PED关系密切。2型NV则突破RPE-Bruch膜复合体,一般不伴PED形成。3型NV即RAP,起源于视网膜深层毛细血管丛,逐渐生长并向下突破RPE层并常伴有视网膜内液、视网膜内出血及PED形成[47-48]。1型NV-PED在检眼镜下通常表现为表面不规则的RPE隆起,于FFA早期可见不规则斑点状强荧光,造影期间可见染料渗漏[19,49]。ICGA上可表现为焦点状强荧光或斑状强荧光,伴染料渗漏[6,19]。OCT上表现为表面不平、形状不规则、内部含不均质的高反射及低反射物质的RPE隆起[10,19]。PCV-PED可表现为特征的一个或多个橘色视网膜下圆形隆起,可伴视网膜下或RPE下大量出血[50]。PCV-PED在ICGA上的典型特征为分支新生血管网及其末端扩张的息肉状病灶[51-52],部分典型病例的息肉状病灶可在ICGA晚期呈“冲刷现象”。PCV所致的PED在OCT上也有特征性的表现,包括尖峰状PED、RPE下环状病变、复杂或多叶PED、双层征等[50]。3型NV-PED在ICGA中可见焦点状强荧光伴渗漏,部分在OCT上可观察到PED上方局灶RPE层中断,中断处见连接PED与视网膜内区域的连续漏斗状高反病灶射[53]。Kuehlewein等[54]通过OCTA观察到与结构OCT上的漏斗状高反射相对应的异常血流信号。
3 视网膜色素上皮脱离影像学新进展
除前述具有代表性的PED各型多模式影像表现外,近年来国内外研究在OCT、OCTA、短波长自发荧光(short-wavelength autofluorescence, SW-AF)影像上发现了诸多新的PED相关征象。3.1 光学相干断层扫描影像新进展
1)洋葱征:表现为OCT上PED内特征性的分层高反射线条,见于nAMD中1型NV的患者,其发生率为5%~7%[57-58]。病理结果提示洋葱征为RPE下的胆固醇结晶沉积[57]。2)多层PED:表现为OCT上一种特征性纺锤形、高度有序分层的高反射带复合体,见于多次抗血管内皮生长因子治疗的1性NV患者眼中,属于慢性纤维血管性PED[59]。其中,由内到外第1层为新生血管组织,第2层为高反射带,第3层为脉络膜前裂隙[60]。研究显示,具有第2层高反射带的患者视力预后较差,且纤维瘢痕形成风险较高,提示该层高反射带可能是纤维瘢痕形成的前兆[59]。3)三层征:表现为OCT上清晰的三条高反射带:RPE、新生血管组织及Bruch膜。三层征见于静止性1型NV[61]。该征象对静止性1型NV具有较高的灵敏度(97%)和特异度(91%)[61]。4)酒窝征:在OCT上表现为PED的局部凹陷,分为1型(顶部凹陷)和2型(侧面凹陷),见于nAMD相关的血管性浆液性PED[62]。这2种凹陷表型均与RPE后表面延长至Bruch膜的高反射带有关,且高反射带与新生血管组织无关[62]。5)获得性卵黄样病变(acquired vitelliform lesion, AVL):OCT上表现为位于视网膜神经上皮与RPE之间的高反射灶,对应SW-AF上强自发荧光,主要见于非血管性PED[63]。Yanık等[64]对合并AVL的非血管性PED进行了平均32.6个月的随访,发现40%的PED扩大,20%最终发展为中心凹萎缩。6)RPE孔:在OCT上表现为PED顶部的连续性中断,不伴RPE波浪状收缩(区别于RPE撕裂),伴下方的脉络膜透射性增强。RPE孔在非血管性及血管性PED中均可见[65]。随访发现RPE孔先于PED塌陷,并可能与萎缩形成有关[65]。3.2 光学相干断层扫描血管成像影像新进展
OCTA的应用帮助深入理解血管性PED结构形成与新生血管形态的关系,然而其应用于非血管性PED的检查时可能出现新生血管伪迹[66-67]。Tan等[66]研究表明,OCTA用于检测血管性PED的灵敏度为76%,特异度为61%,阳性预测值为83%,阴性预测值为50%,非血管性PED的假阳性来自内层视网膜血流的投影或PED表面高反射物质的血流伪影 。文峰团队Chen等[67]发现非血管性PED表面的RPE增殖可在OCTA中出现异常血流伪影信号。这是由于OCTA算法自动去除相关投影伪影时,RPE增殖区域局部背散射光增强的信号不能完全去除所致。因此,临床医生需认识到OCTA在非血管性PED诊断中的局限性,避免误诊和不必要的治疗干预。3.3 短波长自发荧光影像新进展
Bindewald-Wittich等[16]在PED的SW-AF影像研究中提出“车轮征”“甜甜圈征”。“车轮征”于非血管性PED患者中发现,表现为从PED中心向外延伸的放射状强自发荧光线条,形成类似车轮的形状;“甜甜圈征”于玻璃膜疣性PED患者中发现,指SW-AF影像上PED中心为弱自发荧光,同时伴外围较宽的中度强自发荧光环。SW-AF这些异常表现可能是继发于相应视网膜区域形态和代谢改变,不一定与潜在的PED亚型或特定病理相对应。4 总结与展望
随着影像技术的蓬勃发展,AMD相关的PED分型体系也在不断演变。从FFA的单一视角到ICGA引入,帮助我们更明确地鉴定PED中的血管成分。随后,OCT时代的开启使得我们对PED的断层结构和内容物特征有了更深入的理解,并推动了PED分型的进一步细化。在如今的多模式影像时代,玻璃膜疣性PED、浆液性PED、血管性PED等各亚型逐步被认识熟知,并在一定程度上指导治疗方案决策和预后。但同时,层出不穷的新认识和新概念伴随而来的是PED分型愈加繁冗复杂,部分亚型之间存在重叠,分型标准仍未完全明确。未来的研究可依据黄斑新生血管分型新体系进一步明确血管性PED分型及深化PCV这一我国高发的疾病相关的PED研究[68-69]。更完善的PED分型标准将有助于提高精确诊疗,为AMD患者的个性化治疗提供依据。声明
在论文撰写中无使用生成式人工智能。论文撰写中的所有内容均由作者独立完成,并对出版物的真实性和准确性承担全部责任。利益冲突
所有作者均声明不存在利益冲突。开放获取声明
本文适用于知识共享许可协议 (Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。基金
参考文献
Sun ZH, Wen F, Chen YL, et al. Characteristics changes of ocular fundus of retinal pigment epithelial detachment in Chinese patients more than 50[ J]. Chin J Ocul Fundus Dis, 2006, 22(4): 224-227. DOI: 10.3760/j.issn: 1005-1015.2006.04.003.
Li JJ, Li H, Hu ZL, et al. Retinal pigment epithelium detachment in age-related macular degeneration[ J]. Recent Adv Ophthalmol, 2018, 38(10): 972-976. DOI: 10.13389/j.cnki.rao.2018.0230.