返回

反复发作视神经脊髓炎 11 年随访一例并 NMOSD 治疗的现状与展望

阅读量:1184
DOI:10.12419/25040903
发布日期:2025-08-28
作者:
刘晓宁 ,丘瑶 ,杨晖
展开更多

关键词

视神经脊髓炎谱系疾病
预防复发
免疫抑制剂
靶向生物制剂

摘要

视神经脊髓炎谱系疾病(neuromyelitis optica spectrum disorder, NMOSD)是一种罕见的中枢神经系统自身免疫性疾病,主要表现为视神经炎和纵向广泛性横贯性脊髓炎,复发率高,反复发作可导致不可逆的神经功能损害。文章报告了一例44岁女性的NMOSD患者,以反复发作的视神经炎为特征,经过长达11年的随访,共历经4次临床发作。患者首次发作时,因治疗过程中糖皮质(激素)减量过快和自行停药导致病情恶化,后续发作中采用了规范的急性期治疗和缓解期预防复发方案,包括大剂量激素冲击、免疫抑制剂(硫唑嘌呤、吗替麦考酚酯)和静脉注射免疫球蛋白(intravenous immunoglobulin, IVIG)等,显著延长了缓解期。最近一次复发中,患者首次使用了新型生物制剂伊奈丽珠单抗(CD19单克隆抗体)预防复发治疗。文章通过具体病例分析和文献综述,反映NMOSD急性期和缓解期预防复发治疗策略的时代变迁,并探索新型生物制剂使用过程中需要注意的问题。

全文

文章亮点

1. 关键发现

· 视神经脊髓炎急性期治疗应及时足量,最大限度挽救视功能。
· 预防措施(传统免疫抑制剂或生物制剂)能延长视神经脊髓炎患者的复发间隔。
· B细胞耗竭治疗不能替代激素抗炎:新型生物免疫抑制药物伊奈利珠单抗使用期间,糖皮质激素抗炎仍应充分,减量需缓慢,否则可能引起病情的反复。

2. 已知与发现

· 视神经脊髓炎谱系疾病(neuromyelitis optica spectrum disorder, NMOSD)复发率高,反复发作可对视觉系统造成严重的不可逆的损害。
· 随着NMOSD主要致病性AQP4抗体的发现和发病机制研究的深入,3种新型生物制剂在多个国家获批作为AQP 4 IgG血清阳性NMOSD成人或成人/青少年的预防复发的维持治疗药物,有望为患者带来新的曙光。

3. 意义与改变

· 新型与传统免疫抑制药物更迭时代,探讨更佳的视神经脊髓炎治疗策略。

        视神经脊髓炎谱系疾病(neuromyelitis optica spectrum disorder,NMOSD)是一种罕见的中枢神经系统自身免疫性疾病,主要表现为视神经炎和纵向广泛性横贯性脊髓炎。发病率为(0.7~10)/10万人,差异取决于地理位置和种族,女性比男性更常见(约9:1)[1-2]
        NMOSD复发率高,反复发作的视神经脊髓炎谱系疾病相关的视神经炎(neuromyelitis optica spectrum disorder-related optic neuritis, NMOSD-ON)可对视神经造成不可逆的损害。研究表明,NMOSD患者中仅有25%的长期残疾是由初次发作引起的,这突出了预防复发在降低残疾状况中的关键作用[3]。随着NMOSD主要致病性水通道蛋白4(aquaporin-4, AQP4)抗体的发现和发病机制研究的深入,治疗和预防NMOSD的研究也取得了进展。NMOSD的治疗包括急性发作期的治疗以及缓解期预防复发的维持治疗。在2019年之前,没有获批的针对AQP4-IgG血清阳性NMOSD治疗的药物。传统的免疫抑制剂在预防复发治疗方面尽管在经验上被确定为可能有益,但都是超说明书使用且作用有限。这些药物包括利妥昔单抗(rituximab, RTX)、硫唑嘌呤(azathioprine, AZA)、吗替麦考酚酯(mycophenolate mofetil, MMF)、甲氨蝶呤(methotrexate, MTX)、托珠单抗(tocilizumab)。目前有3种生物制剂在多个国家获批作为AQP4-IgG血清阳性NMOSD成人或成人/青少年的预防复发的维持治疗药物包括依库珠单抗(eculizumab)、伊奈利珠单抗(inebilizumab)和萨特利珠单抗(satralizumab)[4-8],有望为患者带来新的曙光。
        本文报告1例以反复发作视神经炎为特征的视神经脊髓炎(neuromyelitis optica,NMO)的病例,在为期11年的随访中,患者共经历4次临床发作,经过规范的急性期及时足量的抗炎及维持期预防复发治疗后,患者的缓解期显著延长,病情得到有效控制。同时,本文初步探讨新型靶向CD19人源单克隆抗体伊奈利珠单抗的应用经验,并对NMOSD的治疗现状和未来发展方向进行综述。

1 病例报告

        基本情况:患者,女,44岁,双眼反复视力下降11年,无外伤史、家族史及其他疾病史。
        首次发作:2013年2月患者左眼突发性视力下降,外院就诊体格检查:右眼视力(vision of the right eye,VOD) 0.8,左眼视力(vision of the left eye,VOS)光感/定位不准,右眼眼前节及眼底未见异常,左眼视盘色稍淡,轻水肿。辅助检查:图形视觉诱发电位(pattern visual evoked potential,P-VEP)提示右眼各波P100潜伏期在正常范围;左眼波形未引出。视野:右眼上方弓形缺损,鼻侧累及中心注视点。外院诊断:双眼视神经炎,治疗上予甲泼尼龙冲击治疗并逐渐减量(500 mg/d静脉滴注3 d→120 mg/d静脉滴注2 d→40 mg/d口服7 d,后每周减8 mg)。半个月后左眼视力提高至指数/10 cm,后患者因自觉视力无明显提高自行停用激素,左眼视力进一步下降至无光感。
        第1次复发:1年后(2014年2月),患者右眼突发视力下降,体格检查:VOD FC/30 cm,VOS 无光感(no light perception‌,NLP),右眼瞳孔直接对光反射迟钝,左眼直接对光反射消失,右眼视盘色淡界清,左眼视盘苍白。颅脑+眼眶磁共振成像(magnetic resonance imaging,MRI)平扫未见异常。外院诊断为缺血性视神经病变 od。予甲泼尼龙冲击治疗并逐渐减量(500 mg/d静脉滴注,共5 d→60 mg/d口服,共7 d,每周减5 mg),联合复方樟柳碱注射液颞浅动脉旁皮下注射及营养神经治疗。
        患者自觉右眼视力仍渐进性下降后于我院就诊,来诊时视力已下降至FC/15 cm,左眼无光感(NLP)。根据患者病情危重、治疗反应差且反复发作的临床特点,建议患者进行血清AQP4抗体检测,结果显示:AQP4-lgG(+)。诊断:视神经脊髓炎 ou,予甲泼尼龙冲击治疗并缓慢序贯减量(1000 mg/d起始)及免疫球蛋白静脉滴注(intravenous immunoglobulin , IVIG)(0.4 g/kg,共5 d)治疗,加用免疫抑制剂AZA预防复发。1个月后患者右眼视力提高至1.2,3个月后视野检查示残留上方弓形视野缺损,平均缺损值(MD值)为-14.97 dB。缓解期予小剂量激素、IVIG和AZA预防复发,此后5年内患者病情稳定,未复发。
        第2次复发:5年后直至2019年2月,患者右眼再次出现视物遮挡,VOD 1.0,VOS NLP,视野检查示右眼环形缺损(MD值为-23.96 dB),急性期再次予甲泼尼龙冲击治疗(1 000 mg/d起始),并联合环磷酰胺(0.6 g静脉滴注,每周1次,共4次)和IVIG[0.4 g/(kg·d)静脉滴注,共5 d]治疗。1月后下半视野好转(MD值为16.82 dB)。后续维持使用小剂量激素、MMF及IVIG预防复发。
        第3次复发:4年余后至2023年12月,患者右眼再次视力下降至0.2,伴眼球转动痛,复查AQP4-lgG 1: 320,急性期予激素冲击治疗(1 000 mg/d起始),并先后进行血浆置换(plasma exchange, PLEX)4次。缓解期免疫抑制治疗除MMF外,发作后1个月首次使用生物制剂伊奈利珠单抗静脉滴注(300 mg,15 d及6个月后再次分别行300 mg静脉滴注)预防复发。患者急性期治疗后视力提高至0.63,后外院予激素减量至甲泼尼龙口服40 mg/d(后减至30 mg/d,共2周→25 mg,共2周),2个月时自觉再次出现视物遮挡,复查视野:视野缺损加重(MD值:19.37 dB→21.80 dB),予提高激素剂量(甲泼尼龙片80 mg起始)并缓慢序贯减量,3个月后患者视野稍有改善(MD值:21.61 dB),矫正视力维持在0.8,至今再无复发(图2)。

图1 NMOSD患者11年临床随访-发作和用药时间线 

Figure 1 Timeline of recurrence and treatment during a 11-years course of neuromyelitis optica spectrum discorder

图1 NMOSD患者11年临床随访-发作和用药时间线 Figure 1 Timeline of recurrence and treatment during a 11-years course of neuromyelitis optica spectrum discorder
ON: 视神经炎 ; MD: 平均偏差。
ON: optic neuritis, MD: mean deviation.

图2 本例患者第三次复发病程中视野及微视野的变化 

Figure 2 Changes in visual field and macular microperimetry during the third relapse in the patient

图2 本例患者第三次复发病程中视野及微视野的变化 (A)发病时患者的视野(MD值:-25.43 dB);(B)和(E)经过急性期激素冲击和血浆置换治疗后,视野(MD值:-19.37 dB)有改善,黄斑微视野(平均阈值:19.2 dB);(C)和(F)发病后2个月激素减量过快视野(MD值:-21.80 dB)和微视野(平均阈值:16.6 dB)损伤加重;(D)和(G)调整口服甲泼尼龙片用量至80 mg,缓慢序贯减量,发病后3个月患者视野(MD值:-21.61 dB)及微视野(平均阈值:20.7 dB)均稍有改善。 Figure 2 Changes in visual field and macular microperimetry during the third relapse in the patient (A) Visual field at the onset of relapse (MD value: -25.43 dB); (B) and (E) After acute-phase treatment with high-dose steroid pulse therapy and plasmapheresis, the visual field (MD value: -19.37 dB) showed improvement, and macular microperimetry (average threshold: 19.2 dB) was recorded; (C) and (F) Two months after the onset (during steroid tapering), the visual field (MD value: -21.80 dB) and microperimetry (mean threshold: 16.6 dB) worsened. (D) and (G) After adjusting the oral prednisone dose to 80 mg and implementing a slow, sequential tapering regimen, the patient's visual field (MD value: -21.61 dB) and microperimetry (mean threshold: 20.7 dB) showed slight improvement at 3 months post-onset.
(A)发病时患者的视野(MD值:-25.43 dB);(B)和(E)经过急性期激素冲击和血浆置换治疗后,视野(MD值:-19.37 dB)有改善,黄斑微视野(平均阈值:19.2 dB);(C)和(F)发病后2个月激素减量过快视野(MD值:-21.80 dB)和微视野(平均阈值:16.6 dB)损伤加重;(D)和(G)调整口服甲泼尼龙片用量至80 mg,缓慢序贯减量,发病后3个月患者视野(MD值:-21.61 dB)及微视野(平均阈值:20.7 dB)均稍有改善。
(A) Visual field at the onset of relapse (MD value: -25.43 dB); (B) and (E) After acute-phase treatment with high-dose steroid pulse therapy and plasmapheresis, the visual field (MD value: -19.37 dB) showed improvement, and macular microperimetry (average threshold: 19.2 dB) was recorded; (C) and (F) Two months after the onset (during steroid tapering), the visual field (MD value: -21.80 dB) and microperimetry (mean threshold: 16.6 dB) worsened. (D) and (G) After adjusting the oral prednisone dose to 80 mg and implementing a slow, sequential tapering regimen, the patient's visual field (MD value: -21.61 dB) and microperimetry (mean threshold: 20.7 dB) showed slight improvement at 3 months post-onset.

2 讨论

        近年来,视神经脊髓炎在病因学研究和治疗上均有突破性进展。AQP4抗体作为精确诊断NMOSD的生物学标志物,提高了临床医生对其病理生理学的认识。本例患者在2013年首次发作时未进行视神经炎的病因学检测,继而未做预防复发的治疗,导致1年内再次发作。第一次复发到我院就诊时,首次进行病因学诊断,检测出AQP4抗体阳性,确诊为NMO。NMO是一种严重的自身免疫介导神经脱髓鞘和轴突损伤,主要影响脊髓和视神经,在一些患者中可发生颅脑和脑干的病变。在≥80%的病例中,NMO是由水通道蛋白4的致病性IgG(AQP 4- IgG)引起的,并且可以将NMO和多发性硬化(multiple sclerosis,MS)区别开来[9-11]。AQP 4-IgG阳性的NMO本质是一种自身免疫性星形胶质细胞病,星形胶质细胞损伤会继发少突胶质细胞和神经元的损伤。
        NMOSD的缓解期维持治疗对于延长复发间隔、减少复发率和降低致残率至关重要。文献表明,至少有85%的NMO患者会反复发作,约50%的NMO患者在初始事件的第1年内复发,约75%在2~3年内复发[12]。每次复发的不完全缓解都会引起神经损伤的累加。本例NMO患者在11年的随访中发作视神经炎4次,未出现过脊髓炎的症状,第1次视神经炎发作治疗欠规范:1)未使用预防复发如免疫抑制剂等药物;2)激素减量过快;3)短期内自行停用激素,不仅病情恶化,且1年后即出现复发。后续的3次发作均采取当时最优的急性期治疗及缓解期预防复发方案。急性期大剂量激素冲击(分别联合IVIG治疗,第2次复发加用环磷酰胺,第3次复发联合PLEX)。当对静脉滴注甲泼尼龙的反应较差时,建议在NMOSD复发后的5 d内启动PLEX或免疫吸附(immunoadsorption, IA)[13]。PLEX也可以作为一线治疗给药,文献表明在严重的横贯性脊髓炎复发中,与单用大剂量激素患者相比,早期联合PLEX与完全恢复有关[14]。缓解期的预防方案为小剂量激素、IVIG的维持治疗以及免疫抑制治疗,从AZA更迭到MMF,将缓解期延长至4~5年。而最近一次发作更是使用了新型靶向B细胞耗竭类药物CD19人源化单克隆抗体伊奈利珠单抗。研究表明,单抗类药物相较传统免疫抑制剂能更有效地减少年复发率(annual relapse rate, ARR),改善扩展残疾状态量表(Expanded Disability Status scale, EDSS)评分(表1)。
        本例患者最近一次发作,是在MMF联合小剂量激素的维持治疗4年后又出现疾病活动,这次使用伊奈利珠单抗联合MMF用于预防复发。2023年的AQP4-lgG+NMOSD管理共识[23]提出,单抗类药物的治疗时机为NMOSD一旦确诊,不论是首次发作,还是既往传统治疗失败后的复发均可启动单抗治疗。关于单药还是联合用药,共识中指出依库珠单抗、伊奈利珠单抗或萨特利珠单抗均可以作为单药用来预防NMOSD患者的复发,从而减少药物的不良反应。但在已经接受传统免疫抑制剂期间发生疾病活动的NMOSD患者可以联合生物制剂治疗,联合治疗应注意免疫抑制剂的短期和长期安全性和耐受性,并建议联合用药期间中,在生物制剂逐渐起效的基础上,传统免疫抑制剂可以缓慢减量,以减少不良反应[23]。
        在单抗类药物治疗期间,需注意B细胞耗竭治疗不能替代激素抗炎。本例患者最近一次复发,在使用伊奈利珠单抗的初期,因激素减量过快,视野缺损再次加重,予提高激素剂量治疗,并缓慢减量后,其视野及微视野结果均有一定程度的改善(图2)。这提示临床医生,即使在使用B细胞耗竭类药物如伊奈利珠单抗初期,仍不宜过快地减量激素,这可能会引起病情的反复。激素的作用机制是通过抑制炎性细胞因子的产生和单核细胞的增殖来抑制炎症级联反应,而B细胞耗竭剂是通过靶向清除B细胞来抑制后续的炎症反应,其起效需要一定的时间,而对于已经发生的炎症反应仍需要糖皮质激素予以充分抗炎。至于生物制剂使用中激素的最佳维持治疗时间,仍需要大样本的临床研究进一步探索。伊奈利珠单抗常见的不良反应包括尿路感染、鼻咽炎、关节痛、输液反应、头痛和免疫球蛋白水平下降等。本例患者在使用伊奈利珠单抗和MMF联合用药期间,暂未见不良反应发生,安全性和耐受性较好。此外,在伊奈利珠单抗治疗期间,应定期监测B细胞和血清免疫球蛋白水平,有助于及时调整治疗方案。

表1 目前针对NMOSD免疫抑制治疗的文献 

 Table1 Recent Immunosuppressive Treatment Studies of Patient With NMOSD

研究文献

Alexis et al[15] 2017 (MMF)

Huh et al,[16] 2014 (MMF)

Mealy et al,[17] 2014

(MMF)

Jacob et al,[18] 2009

(MMF)

Costanzi et al,[19] 2011

(AZA)

Bichuetti et al,[20] 2010 (AZA)

Bruce et al,[21] 

2024Inebilizumab

Ingo et al,[22] 2023, (Satralizumab)

人数

67

58

28

24

70

29

230

62

治疗中位数/

24

20

26

27

22

28

48

48

ARR

1 vs. 0c

1.5 vs. 0a

2.61 vs. 0.33a

1.28 vs. 0.09a

2.18 vs. 0.64a

2.1 vs. 0.6a

1.69 vs. 0.092

0.95 vs. 0.08

EDSS

4 vs. 3.75c

3.0 vs. 2.5b

NR

6.0 vs. 5.5

3.5 vs. 3.5

4.7 vs. 4.7

3.90 vs. 3.70

3.88 vs. 3.59

无复发率/%

49.3

60

64

46

37

55

82.7

78

EDSS改善分值/%

83

91

NR

91

61

69

NR

86

ARR年复发率EDSS扩展残疾状态量表AZA硫唑嘌呤MMF吗替麦考酚酸NR,未报告;aP<0.001bP<0.01cP<0.05

ARR, annual relapse rate; EDSS, expanded disability status scale; AZA, azathioprine; MMF, mycophenolate mofetil; NR, not reported; aP<0.001, bP<0.01,  cP<0.05.

3 NMOSD的治疗

        从本例NMOSD患者的11年随访中,可以得出NMOSD的治疗最主要的目标:1)急性期及时充分的治疗,最大限度地挽救视功能;2)缓解期的预防复发治疗,延长复发间隔,减少神经损伤的累积。以下从这两方面对NMOSD治疗的现状与未来趋势进行简要综述。

3.1 急性期治疗

        对于NMO的治疗,急性发作期建议采取大剂量激素冲击治疗,当病情仍在进展或对激素无反应时,环磷酰胺、IVIG、PLEX或IA是常用的急性期治疗方法[24-27]。PLEX是急性期治疗的替代或附加选择。PLEX基于体外血液分离技术,旨在从体循环中清除致病性自身反应性抗体。PLEX已被证明对44%~75%的NMO患者有效[25-26]。IA是一种更具选择性的单采方法,它允许从体循环中去除特异性抗体和免疫复合物,而无需完全血浆置换。IVIG的作用机制较为复杂,包括中和促炎抗体、抑制补体、改变单核细胞和B细胞上的Fc-γ-受体,以及下调T细胞活化和细胞因子分泌[28-30]。除了减轻发作时的损伤外,IVIG在后续更长的缓解期应用以减少复发,但这方面的证据相对较少[31-32]。IVIG的另一大优势是安全且耐受性良好[33-34]。环磷酰胺是一种烷化剂,通过烷化DNA,干扰其复制和转录,抑制细胞分裂,抑制T细胞和B细胞的增殖,从而降低免疫反应,具有起效快、成本低等优势。

3.2 缓解期的维持治疗

        维持治疗应在复发治疗后不久开始,以防止未来病情加重和累积残疾。急性发作病情控制后激素应缓慢减量,低剂量泼尼松的维持有一定预防NMO复发的作用[35-36]
    3.2.1 传统免疫抑制剂
         文献建议使用免疫抑制剂如AZA、MMF、米托蒽醌和MTX,进行长期(至少5年)维持治疗,特别是对于AQP4-IgG阳性患者[35-37]。虽然没有正式批准,并且大多数是在经验基础上使用或在短期开放标签试验中测试,但一些免疫抑制剂已作为单一或联合治疗应用于NMO[38]。AZA是一种嘌呤类似物,为NMO传统治疗中的一线药物,可抑制DNA合成和B和T细胞增殖[39],需注意具有巯基嘌呤甲基转移酶(thiopurine methyltranferase, TPMT)* 3C杂合或纯合基因突变的人更容易发生不良事件。有更多的证据表明MMF在NMOSD中的预防复发治疗有效。霉酚酸的前药通过抑制肌苷一磷酸脱氢酶抑制B、T细胞的增殖,回顾性研究表明,MMF的应用可使NMOSD患者的残疾程度稳定或改善,复发率降低(程度较低),血清AQP4抗体阳性或阴性患者之间无差异[15-16]。其他免疫抑制剂(包括米托蒽醌、甲氨蝶呤、环磷酰胺和环孢霉素)对于NMO的治疗效果仅在病例系列或有限的患者群体中得到证实。它们的作用模式涉及参与炎症过程的细胞和因子的非特异性消耗或减少的活化。这些药物可能存在心脏、肝脏、肺、骨髓和生殖毒性,应注意使用的安全性[40-42]
     3.2.2  生物制剂类
        B细胞耗竭:鉴于B细胞的过度活跃以及体液免疫在NMO发病机制中起主要作用,B细胞耗竭法是目前缓解期主要治疗方法之一。RTX是针对CD-20的嵌合单克隆抗体。一些研究表明,RTX的标签外应用可以显著降低NMO的复发率和致残率[43-44],且优于MMF和AZA[45],但仍要注意重度机会性感染或心血管衰竭的风险。伊奈利珠单抗是一种抗CD-19的人源化单克隆抗体,而CD-19是一种广泛在B细胞系表达的标志物,不仅靶向B细胞,还靶向表达CD1试验中浆母细胞。伊奈利珠单抗的作用机制是抗体依赖性细胞介导的细胞毒性导致B细胞持续耗竭[46]。在一项Ⅲ期临床的随机双盲试验,表明伊奈利珠单抗可以明显延长复发的间隔时间,减少致残和影像(如MRI)显示的病情活动的恶化[47]。伊奈利珠单抗于2020年6月获美国食品和药品监督管理局(U.S. Food and Drug Adminstration,FDA)批准用于治疗成人AQP4-IgG阳性NMOSD。
        靶向白细胞介素-6(interleukin-6,IL-6): IL-6调节T17和Treg活性之间的平衡,在最终诱导B细胞亚群产生抗AQP4-IgG的炎症级联反应中起重要作用。第一个适用于NMO治疗的IL-6受体拮抗剂是托珠单抗,其为人源化单克隆抗体[48],既往用于治疗自身免疫性关节炎。托珠单抗给药后,在小部分NMO患者中显示了一些有益的效果,包括那些对细胞耗竭治疗无反应的患者[49]。一项开放标签、多中心、随机2期试验(TANGO)[50]证实托珠单抗在实现临床终点(降低复发率和持续残疾)方面优于AZA,且发生重度不良结局和转氨酶升高的比例较小。萨特利珠单抗(satralizumab)是一种靶向IL-6受体的人源化重组单克隆抗体。2项Ⅲ期、双盲、随机多中心试验已经证明,当作为基线低剂量免疫抑制剂(SAkuraSky)的添加治疗或作为单药治疗时,萨特利珠单抗显示出在NMO的临床过程中的有益作用,且安全性和耐受性良好,没有明显的不良反应[8,22]。2020年,萨特利珠单抗也被FDA批准作为血清阳性NMO患者的治疗药物。
        靶向补体C5:由于补体级联和膜攻击复合物参与星形胶质细胞和神经元的炎性损伤,补体成为NMO治疗的另一个靶点。依库珠单抗(eculizumab)是一种人源化单克隆抗体,靶向于末端补体蛋白C5并阻止其裂解成C5 a和C5 b组分。依库珠单抗最初用于风湿性疾病,如系统性红斑狼疮、类风湿关节炎和阵发性血小板减少性血红蛋白尿症、阵发性睡眠性血红蛋白尿症和肌无力,后来显示在实验模型中能抑制NMO的病情进展[51-52]。在PREVENT随机双盲试验中,接受依库珠单抗治疗的AQP4-IgG血清阳性患者的复发风险显著低于接受安慰剂治疗的患者。依库珠单抗增加了细菌感染的风险,因此必须考虑适当地预防[53]。依库珠单抗耐受性良好,可显著降低复发发作频率,稳定NMOSD患者的神经系统状态。2019年,FDA和欧洲药品管理局(European Medicine Agency,EMA)批准依库珠单抗用于治疗血清阳性的复发性NMOSD患者[4]
        新靶点:新的抗CD 20抗原的单克隆抗体Ublituximab,在血清阳性NMOSD患者的I期开放临床试验中已证明其可耗竭B细胞并改善临床症状[54-55]。另一种正在研究的单克隆抗体贝利木单抗(belimumab)靶向B细胞活化因子(B-cell activation factor, BAFF)。还可以通过过继转移串联嵌合抗原受体(chimeric antigen receptor, CAR)T细胞实现B细胞耗竭,已在NMO动物模型上进行试验[56]
        补体抑制有正在进行的临床前或临床试验,研究靶向补体途径的不同组分(例如C1、C3、C5、备解素)。另一种方法与补体调节复合物(膜相关糖蛋白)的上调有关,在一些研究中,他汀类药物显示出这种作用[57]
        人源化重组单克隆抗体Aquaporumab,可与致病性IgG竞争结合AQP4。与致病性抗体相比,Aquaporumab对其靶标显示出更大的亲和力,但Fcγ突变不会激活补体和细胞依赖性毒性,其疗效已在临床前研究中得到证实[58]

4 挑战

        进一步探索NMOSD治疗反应的生物标志物,有助于优化治疗策略。在缺乏头对头研究的情况下,生物制剂之间比较的证据也是有价值的。另外,依库珠单抗、伊奈利珠单抗和萨特利珠单抗在NMOSD治疗上的真实世界长期安全性、耐受性和疗效特征需要给予持续关注。

声明

在论文撰写中未使用生成式人工智能。论文撰写中的所有内容均由作者独立完成,并对出版物的真实性和准确性承担全部责任。

利益冲突

所有作者均声明不存在利益冲突。

开放获取声明

本文适用于知识共享许可协议(Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。

基金

暂无基金信息

参考文献

1、Papp V, Magyari M, Aktas O, et al. Worldwide incidence and prevalence of neuromyelitis optica: a systematic review[J]. Neurology, 2021, 96(2): 59-77. DOI: 10.1212/WNL.0000000000011153.
2、Hor JY, Asgari N, Nakashima I, et al. Epidemiology of neuromyelitis optica spectrum disorder and its prevalence and incidence worldwide[J]. Front Neurol, 2020, 11: 501. DOI: 10.3389/fneur.2020.00501.
3、Palace J, Lin DY, Zeng D, et al. Outcome prediction models in AQP4-IgG positive neuromyelitis optica spectrum disorders[J]. Brain, 2019, 142(5): 1310-1323. DOI: 10.1093/brain/awz054.
4、Frampton JE. Eculizumab: a review in neuromyelitis optica spectrum disorder[J]. Drugs, 2020, 80(7): 719-727. DOI: 10.1007/s40265-020-01297-w.
5、Nie T, Blair HA. Inebilizumab: a review in neuromyelitis optica spectrum disorder[J]. CNS Drugs, 2022, 36(10): 1133-1141. DOI: 10.1007/s40263-022-00949-7.
6、Cree BAC, Bennett JL, Kim HJ, et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial[J]. Lancet, 2019, 394(10206): 1352-1363. DOI: 10.1016/S0140-6736(19)31817-3.
7、Yamamura T, Kleiter I, Fujihara K, et al. Trial of satralizumab in neuromyelitis optica spectrum disorder[J]. N Engl J Med, 2019, 381(22): 2114-2124. DOI: 10.1056/NEJMoa1901747.
8、Traboulsee A, Greenberg BM, Bennett JL, et al. Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial[J]. Lancet Neurol, 2020, 19(5): 402-412. DOI: 10.1016/S1474-4422(20)30078-8.
9、Jarius S, Wildemann B. Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature[J]. Brain Pathol, 2013, 23(6): 661-683. DOI: 10.1111/bpa.12084.
10、Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis[J]. Lancet, 2004, 364(9451): 2106-2112. DOI: 10.1016/S0140-6736(04)17551-X.
11、Lennon VA, Kryzer TJ, Pittock SJ, et al. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel[J]. J Exp Med, 2005, 202(4): 473-477. DOI: 10.1084/jem.20050304.
12、Wingerchuk DM, Hogancamp WF, O’Brien PC, et al. The clinical course of neuromyelitis optica (Devic’s syndrome)[J]. Neurology, 1999, 53(5): 1107-1114. DOI: 10.1212/wnl.53.5.1107.
13、Carnero Contentti E, Rojas JI, Cristiano E, et al. Latin American consensus recommendations for management and treatment of neuromyelitis optica spectrum disorders in clinical practice [Mult Scler Relat Disord. 2020 Oct;45: 102428[J]. Mult Scler Relat Disord, 2021, 52: 103026. DOI: 10.1016/j.msard.2021.103026.
14、Kleiter I, Gahlen A, Borisow N, et al. Apheresis therapies for NMOSD attacks: a retrospective study of 207 therapeutic interventions[J]. Neurol Neuroimmunol Neuroinflamm, 2018, 5(6): e504. DOI: 10.1212/NXI.0000000000000504.
15、Montcuquet A, Collongues N, Papeix C, et al. Effectiveness of mycophenolate mofetil as first-line therapy in AQP4-IgG, MOG-IgG, and seronegative neuromyelitis optica spectrum disorders[J]. Mult Scler, 2017, 23(10): 1377-1384. DOI: 10.1177/1352458516678474.
16、Huh SY, Kim SH, Hyun JW, et al. Mycophenolate mofetil in the treatment of neuromyelitis optica spectrum disorder[J]. JAMA Neurol, 2014, 71(11): 1372-1378. DOI: 10.1001/jamaneurol.2014.2057.
17、Mealy MA, Wingerchuk DM, Palace J, et al. Comparison of relapse and treatment failure rates among patients with neuromyelitis optica: multicenter study of treatment efficacy[J]. JAMA Neurol, 2014, 71(3): 324-330. DOI: 10.1001/jamaneurol.2013.5699.
18、Jacob A, Matiello M, Weinshenker BG, et al. Treatment of neuromyelitis optica with mycophenolate mofetil: retrospective analysis of 24 patients[J]. Arch Neurol, 2009, 66(9): 1128-1133. DOI: 10.1001/archneurol.2009.175.
19、Costanzi C, Matiello M, Lucchinetti CF, et al. Azathioprine: tolerability, efficacy, and predictors of benefit in neuromyelitis optica[J]. Neurology, 2011, 77(7): 659-666. DOI: 10.1212/WNL.0b013e31822a2780.
20、Bichuetti DB, Lobato de Oliveira EM, Oliveira DM, et al. Neuromyelitis optica treatment: analysis of 36 patients[J]. Arch Neurol, 2010, 67(9): 1131-1136. DOI: 10.1001/archneurol.2010.203.
21、Cree BAC, Kim HJ, Weinshenker BG, et al. Safety and efficacy of inebilizumab for the treatment of neuromyelitis optica spectrum disorder: end-of-study results from the open-label period of the N-MOmentum trial[J]. Lancet Neurol, 2024, 23(6): 588-602. DOI: 10.1016/S1474-4422(24)00077-2.
22、Kleiter I, Traboulsee A, Palace J, et al. Long-term efficacy of satralizumab in AQP4-IgG-seropositive neuromyelitis optica spectrum disorder from SAkuraSky and SAkuraStar[J]. Neurol Neuroimmunol Neuroinflamm, 2023, 10(1): e200071. DOI: 10.1212/NXI.0000000000200071.
23、Paul F, Marignier R, Palace J, et al. International Delphi consensus on the management of AQP4-IgG+ NMOSD: recommendations for eculizumab, inebilizumab, and satralizumab[J]. Neurol Neuroimmunol Neuroinflamm, 2023, 10(4): e200124. DOI: 10.1212/NXI.0000000000200124.
24、Papadopoulos MC, Bennett JL, Verkman AS. Treatment of neuromyelitis optica: state-of-the-art and emerging therapies[J]. Nat Rev Neurol, 2014, 10(9): 493-506. DOI: 10.1038/nrneurol.2014.141.
25、Watanabe S, Nakashima I, Misu T, et al. Therapeutic efficacy of plasma exchange in NMO-IgG-positive patients with neuromyelitis optica[J]. Mult Scler, 2007, 13(1): 128-132. DOI: 10.1177/1352458506071174.
26、Merle H, Olindo S, Jeannin S, et al. Treatment of optic neuritis by plasma exchange (add-on) in neuromyelitis optica[J]. Arch Ophthalmol, 2012, 130(7): 858-862. DOI: 10.1001/archophthalmol.2012.1126.
27、Wang L, Liu K, Tan X, et al. Remedial effect of intravenous cyclophosphamide in corticosteroid-refractory patients in the acute phase of neuromyelitis optica spectrum disorder-related optic neuritis[J]. Front Neurol, 2020, 11: 612097. DOI: 10.3389/fneur.2020.612097.
28、Collongues N, Ayme-Dietrich E, Monassier L, et al. Pharmacotherapy for neuromyelitis optica spectrum disorders: current management and future options[J]. Drugs, 2019, 79(2): 125-142. DOI: 10.1007/s40265-018-1039-7.
29、Selmaj K, Selmaj I. Novel emerging treatments for NMOSD[J]. Neurol Neurochir Pol, 2019, 53(5): 317-326. DOI: 10.5603/PJNNS.a2019.0049.
30、Jarius S, Aktas O, Ayzenberg I, et al. Update on the diagnosis and treatment of neuromyelits optica spectrum disorders (NMOSD) - revised recommendations of the Neuromyelitis Optica Study Group (NEMOS). Part I: Diagnosis and differential diagnosis[J]. J Neurol, 2023, 270(7): 3341-3368. DOI: 10.1007/s00415-023-11634-0.
31、Sellner J, Boggild M, Clanet M, et al. EFNS guidelines on diagnosis and management of neuromyelitis optica[J]. Eur J Neurol, 2010, 17(8): 1019-1032. DOI: 10.1111/j.1468-1331.2010.03066.x.
32、Xu Y, Wang Q, Ren HT, et al. Comparison of efficacy and tolerability of azathioprine, mycophenolate mofetil, and cyclophosphamide among patients with neuromyelitis optica spectrum disorder: a prospective cohort study[J]. J Neurol Sci, 2016, 370: 224-228. DOI: 10.1016/j.jns.2016.09.035.
33、Elsone L, Panicker J, Mutch K, et al. Role of intravenous immunoglobulin in the treatment of acute relapses of neuromyelitis optica: experience in 10 patients[J]. Mult Scler, 2014, 20(4): 501-504. DOI: 10.1177/1352458513495938.
34、Altunrende B, Akdal G, Bajin MS, et al. Intravenous immunoglobulin treatment for recurrent optic neuritis[J]. Noro Psikiyatr Ars, 2019, 56(1): 3-6. DOI: 10.5152/npa.2017.20577.
35、Bienia B, Balabanov R. Immunotherapy of neuromyelitis optica[J]. Autoimmune Dis, 2013, 2013: 741490. DOI: 10.1155/2013/741490.
36、Kleiter I, Gold R. Present and future therapies in neuromyelitis optica spectrum disorders[J]. Neurotherapeutics, 2016, 13(1): 70-83. DOI: 10.1007/s13311-015-0400-8.
37、Collongues N, de Seze J. An update on the evidence for the efficacy and safety of rituximab in the management of neuromyelitis optica[J]. Ther Adv Neurol Disord, 2016, 9(3): 180-188. DOI: 10.1177/1756285616632653.
38、Fragoso YD, Sousa NAC, Alves-Leon SV, et al. Clinical characteristics of 153 Brazilian patients with neuromyelitis optica spectrum disorder (NMOSD)[J]. Mult Scler Relat Disord, 2019, 27: 392-396. DOI: 10.1016/j.msard.2018.11.031.
39、Kuitwaard K, van Doorn PA. Newer therapeutic options for chronic inflammatory demyelinating polyradiculoneuropathy[J]. Drugs, 2009, 69(8): 987-1001. DOI: 10.2165/00003495-200969080-00004.
40、Cabre P, Olindo S, Marignier R, et al. Efficacy of mitoxantrone in neuromyelitis optica spectrum: clinical and neuroradiological study[J]. J Neurol Neurosurg Psychiatry, 2013, 84(5): 511-516. DOI: 10.1136/jnnp-2012-303121.
41、Yaguchi H, Sakushima K, Takahashi I, et al. Efficacy of intravenous cyclophosphamide therapy for neuromyelitis optica spectrum disorder[J]. Intern Med, 2013, 52(9): 969-972. DOI: 10.2169/internalmedicine.52.7885.
42、Kageyama T, Komori M, Miyamoto K, et al. Combination of cyclosporine A with corticosteroids is effective for the treatment of neuromyelitis optica[J]. J Neurol, 2013, 260(2): 627-634. DOI: 10.1007/s00415-012-6692-2.
43、Tahara M, Oeda T, Okada K, et al. Safety and efficacy of rituximab in neuromyelitis optica spectrum disorders (RIN-1 study): a multicentre, randomised, double-blind, placebo-controlled trial[J]. Lancet Neurol, 2020, 19(4): 298-306. DOI: 10.1016/S1474-4422(20)30066-1.
44、Gao F, Chai B, Gu C, et al. Effectiveness of rituximab in neuromyelitis optica: a meta-analysis[J]. BMC Neurol, 2019, 19(1): 36. DOI: 10.1186/s12883-019-1261-2.
45、Jeong IH, Park B, Kim SH, et al. Comparative analysis of treatment outcomes in patients with neuromyelitis optica spectrum disorder using multifaceted endpoints[J]. Mult Scler, 2016, 22(3): 329-339. DOI: 10.1177/1352458515587752.
46、Chen D, Gallagher S, Monson NL, et al. Inebilizumab, a B cell-depleting anti-CD19 antibody for the treatment of autoimmune neurological diseases: insights from preclinical studies[J]. J Clin Med, 2016, 5(12): 107. DOI: 10.3390/jcm5120107.
47、Frampton JE. Inebilizumab: first approval[J]. Drugs, 2020, 80(12): 1259-1264. DOI: 10.1007/s40265-020-01370-4.
48、Tanaka T, Narazaki M, Kishimoto T. Therapeutic targeting of the interleukin-6 receptor[J]. Annu Rev Pharmacol Toxicol, 2012, 52: 199-219. DOI: 10.1146/annurev-pharmtox-010611-134715.
49、Ringelstein M, Ayzenberg I, Harmel J, et al. Long-term therapy with interleukin 6 receptor blockade in highly active neuromyelitis optica spectrum disorder[J]. JAMA Neurol, 2015, 72(7): 756-763. DOI: 10.1001/jamaneurol.2015.0533.
50、Zhang C, Zhang M, Qiu W, et al. Safety and efficacy of tocilizumab versus azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): an open-label, multicentre, randomised, phase 2 trial[J]. Lancet Neurol, 2020, 19(5): 391-401. DOI: 10.1016/S1474-4422(20)30070-3.
51、Yao X, Verkman AS. Complement regulator CD59 prevents peripheral organ injury in rats made seropositive for neuromyelitis optica immunoglobulin G[J]. Acta Neuropathol Commun, 2017, 5(1): 57. DOI: 10.1186/s40478-017-0462-4.
52、Pittock SJ, Lennon VA, McKeon A, et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study[J]. Lancet Neurol, 2013, 12(6): 554-562. DOI: 10.1016/S1474-4422(13)70076-0.
53、Pittock SJ, Berthele A, Fujihara K, et al. Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder[J]. N Engl J Med, 2019, 381(7): 614-625. DOI: 10.1056/NEJMoa1900866.
54、Chan KH, Lee CY. Treatment of neuromyelitis optica spectrum disorders[J]. Int J Mol Sci, 2021, 22(16): 8638. DOI: 10.3390/ijms22168638.
55、Traub J, Husseini L, Weber MS. B cells and antibodies as targets of therapeutic intervention in neuromyelitis optica spectrum disorders[J]. Pharmaceuticals (Basel), 2021, 14(1): 37. DOI: 10.3390/ph14010037.
56、Alexopoulos H, Biba A, Dalakas MC. Anti-B-cell therapies in autoimmune neurological diseases: rationale and efficacy trials[J]. Neurotherapeutics, 2016, 13(1): 20-33. DOI: 10.1007/s13311-015-0402-6.
57、Tradtrantip L, Duan T, Yeaman MR, et al. CD55 upregulation in astrocytes by statins as potential therapy for AQP4-IgG seropositive neuromyelitis optica[J]. J Neuroinflammation, 2019, 16(1): 57. DOI: 10.1186/s12974-019-1448-x.
58、Tradtrantip L, Zhang H, Saadoun S, et al. Anti-aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica[J]. Ann Neurol, 2012, 71(3): 314-322. DOI: 10.1002/ana.22657.

相关文章