返回

脂质运载蛋白 2 在眼科疾病中的研究进展

阅读量:1968
DOI:10.12419/25050601
发布日期:2025-09-05
作者:
张亦政 ,朱琦 ,柏文 ,李柯然
展开更多

关键词

脂质运载蛋白2
LCN2
眼科
生物标志物
铁死亡
神经炎症

摘要

脂质运载蛋白2(LCN2/NGAL)是一种多效性分泌糖蛋白,通过调控铁代谢、炎症反应及细胞死亡(铁死亡、凋亡)等机制,广泛参与眼科疾病的病理进程。生理状态下,LCN2在角膜上皮、视网膜神经节细胞层等部位低表达;病理条件下,其表达显著上调且功能呈现高度背景依赖性。在各类眼科疾病(如干眼症、角膜疾病、葡萄膜炎、青光眼、视网膜疾病等)中,既可表现为促炎促凋亡的致病因子,亦能发挥抗炎保护作用。靶向调控LCN2表达或其下游通路可能为眼科疾病治疗提供新策略。

全文

文章亮点

1. 关键发现

• 脂质运载蛋白 2(Lipocalin 2/Neutrophil gelatinase-associated lipocalin, LCN2/NGAL) 在不同眼部疾病中表现出复杂多样的功 能,其作用机制涉及铁代谢、炎症反应、细胞死亡和血管生成等。

2. 已知与发现

• LCN2 是一种多效性分泌糖蛋白,在正常眼部组织中表达水平较低,而在炎症或应激状态下表达显著上调。LCN2 在眼 科疾病中表现出双重作用,既可以作为促炎和促凋亡的致病因子,也可以发挥抗炎和保护作用。

3. 意义与改变

• LCN2 水平在多种眼科疾病的眼内液或血液中显著变化,使其成为潜在的疾病诊断、分期及预后评估的生物标志物。 靶向 LCN2 表达或其下游通路可能为眼科疾病的治疗提供新的策略。
       
        脂质运载蛋白(lipocalin)超家族是一组多样化的小分子分泌蛋白,它们在结构上表现出一些共同的基序,也有共同的功能,同时个别成员进化出高度特异化的角色。具体而言,脂质运载蛋白超家族成员在氨基酸序列上表现出显著的多样性,但它们在三维结构上却高度保守。其核心结构特征是1个由6条反向平行的β折叠链组成的β桶状结构(β-barrel)。这个β桶形成1个杯状或“calyx”结构,内部包裹着1个疏水性配体结合口袋。这一结构是脂质运载蛋白发挥其作为小分子疏水性配体(如类视黄醇、气味分子、信息素、前列腺素等)运输载体功能的基础[1]
        除了配体结合与运输这一基本功能外,脂质运载蛋白还表现出其他共同的分子识别特性,包括与特异性的细胞表面受体相互作用,以及形成可溶性大分子复合物的能力。这些特性使得脂质运载蛋白的功能远超简单的物质转运[2]
        作为脂质运载蛋白(lipocalin)超家族的一名成员,脂质运载蛋白2(lipocalin 2, LCN2)是一种分子量约为25 kDa的分泌型糖蛋白[3]。该蛋白具有多个别名,包括中性粒细胞明胶酶相关脂质运载蛋白(neutrophil gelatinase-associated lipocalin, NGAL)、铁载蛋白、24p3(源于其在小鼠肾脏细胞中的早期发现)[4]。LCN2最初在人中性粒细胞颗粒中被发现[5],随后被证实广泛表达于多种组织和细胞类型,尤其在炎症或应激状态下表达显著上调。
        近年来,越来越多的证据表明LCN2在眼科疾病的发生、发展中也发挥着重要作用。从眼表疾病到眼底病变,LCN2的表达变化及其功能影响被广泛报道。然而,LCN2在眼部的作用机制复杂,甚至在不同疾病模型或不同研究中呈现出看似矛盾的结果(例如,有时促进炎症和细胞死亡,有时则抑制炎症、保护细胞)。这种复杂性可能源于其多样的分子形式、不同的细胞来源、特异性的受体相互作用以及所处的病理微环境。因此,全面系统地梳理LCN2在眼科领域中的研究进展,对于深入理解其在眼病中的作用、评估其作为生物标志物和治疗靶点的潜力至关重要。本综述将依据现有研究证据,系统阐述LCN2的分子特性、在正常和病理状态下眼部的表达与定位、在各类主要眼科疾病(干眼症、角膜疾病、葡萄膜炎、青光眼、视网膜疾病)中的作用及机制、作为生物标志物的价值以及治疗前景,并探讨当前研究存在的争议与未来方向。

1 LCN2的结构与受体

        人类LCN2基因定位于染色体9q34.11[6],编码一个含有信号肽的多肽。切除信号肽后,成熟的分泌型LCN2蛋白由198个氨基酸组成[6],分子量约为25 kDa。其小鼠同源基因/蛋白被称为Lcn2[6]。与其他一些脂质运载蛋白不同的是,LCN2的腔口较大且较浅,边缘排列有带正电荷和极性的氨基酸残基,这使得LCN2不仅能结合疏水小分子,还能结合一些大分子(如铁载体)和亲水性分子,这为其多样的生物学功能奠定了结构基础[7]
        LCN2作为一种分泌蛋白,可以通过受体介导的内吞作用被细胞重新摄取。目前已提出两种可能的细胞表面受体(SLC22A17  和 Megalin),两者均可通过受体介导内吞作用运输LCN2进入细胞。跨膜蛋白SLC22A17是有机阴离子和阳离子转运体SLC22家族的非典型成员[4],参与铁载体的运输,影响细胞铁代谢及免疫调节。关于其在眼部的具体分布,尽管缺乏对所有特定人眼细胞类型进行SLC22A17定位的全面免疫组化研究,但其在脑部,特别是神经胶质细胞和神经元中的表达[8],提示其可能在视网膜中类似的细胞[如Müller细胞、视网膜神经节细胞(retinal ganglion cell,RGC)、小胶质细胞]中表达。Megalin属于低密度脂蛋白受体家族,与 LDL 受体具有结构相似性,是一种多配体结合蛋白,具有广泛的配体结合能力[9]。眼部组织中,Megalin的细胞分布具有以下特点:1)视网膜色素上皮 (retinal pigment epithelium,RPE), Megalin在RPE细胞中的表达已得到充分证实,与眼球大小和视网膜薄厚以及RPE黑色素体形态异常相关[10]。2)睫状体上皮,Megalin表达于睫状体上皮细胞[11],特别是无色素睫状体上皮[10],其基因突变导致Donnai-Barrow综合征,引起先天性牛眼和高度近视[11]。3)神经视网膜,研究显示在患有后巩膜葡萄肿的人供体眼中,神经视网膜中的LRP2表达降低。然而,多数资料未能明确指出神经视网膜内特定细胞类型(如光感受器、米勒细胞、神经节细胞)的Megalin表达情况[12]。其在视神经发育过程中参与SHH信号传导的作用,提示其可能与RGC或其前体细胞有关。眼部不同种类的细胞会差异性地表达这两种受体,表明LCN2在眼部摄入有一定的细胞选择性。

2 LCN2在眼部的表达与定位

2.1 正常生理条件

        在健康状态下,LCN2在多数眼部组织的基线表达水平普遍较低或难以检测[12]。一项研究指出,在野生型小鼠的对照视网膜中,LCN2主要表达于神经节细胞层[13]。另一项研究提及在马的健康视网膜中也检测到LCN2表达[14]

2.2 病理条件下的表达上调与定位

        LCN2的表达在多种眼部病理状态下显著上调,其定位也随之改变,反映了其参与疾病过程的广泛性。在视网膜应激或损伤条件下,如光损伤诱导的视网膜变性(Abca4−/−Rdh8−/−小鼠)和视网膜缺血再灌注(RIR)模型中,LCN2在RPE细胞、小胶质细胞及视网膜内核层和神经节细胞层中表达升高,且血清水平与损伤进程相关[12]。炎症相关疾病中,葡萄膜炎(LPS诱导的大鼠EIU模型)和角膜炎[铜绿假单胞菌(P. aeruginosa,PA)感染]的LCN2上调主要定位于Müller细胞或角膜上皮/基质细胞,而自身免疫性葡萄膜炎中则由浸润免疫细胞表达[15]。在青光眼模型中,LCN2与视网膜神经炎症严重程度相关[16],且在糖尿病视网膜病变 (diabetic retinopathy, DR)(STZ大鼠、高糖内皮细胞及PDR患者玻璃体液)和年龄相关性黄斑变性(AMD患者血浆、干性AMD小鼠及人RPE样本)中,LCN2水平在视网膜血管内皮细胞和周细胞中升高,与血管异常、纤维化及RPE变性密切相关,其同源二聚体形式在干性AMD中尤为突出[17]。此外,LCN2在视网膜脱离(患者玻璃体液及小鼠模型的玻璃体液)[18]、睑缘角结膜炎(患者睑板腺分泌物)及糖尿病性白内障(晶状体上皮细胞)中的表达上调[19],进一步凸显其在多种眼表及眼底疾病中的广泛参与。

3 LCN2在眼科疾病中的功能

        LCN2在多种眼科疾病的病理生理过程中扮演着复杂且关键的角色。其作用往往取决于疾病的类型、阶段以及所涉及的细胞和分子环境。总结见表1。

表 1 LCN2 在不同眼科疾病中的生物学功能 

Table 1 Biological functions of LCN2 in different ophthalmic diseases

功能

LCN2作用

相关细胞

相关疾病

炎症调节

促进炎症反应

小胶质细胞、星形胶质细胞、中性粒细胞

青光眼[16]、糖尿病视网膜病变(DR[20]、年龄相关性黄斑变性(AMD[21]、脱髓鞘视神经炎[22]

抑制炎症反应

Müller细胞

内毒素性葡萄膜炎(EIU[15]

血管生成

增强内皮细胞迁移与侵袭

视网膜血管内皮细胞

DR[23]

细胞保护

抗菌保护

角膜上皮细胞、中性粒细胞

细菌性角膜炎[24]

保护性调节

RPE细胞

视网膜变性[12]

细胞死亡

促进凋亡

光感受器细胞、RGC

光损伤模型[25]、青光眼[26]、视神经损伤[27]

诱导铁死亡

RPE细胞、光感受器细胞

干性AMD[17]、视网膜变性[28]、视网膜缺血再灌注[13]

组织修复

延迟愈合

角膜上皮细胞

角膜损伤[29]、糖尿病角膜病变[30]

促进修复

巨噬细胞、中性粒细胞

细菌性角膜炎[24]

3.1 眼表疾病

     3.1.1 干眼症
        干眼症 (dry eye disease, DED)是一种多因素眼表疾病,核心特征是泪膜稳态失衡和眼表炎症[31]。炎症在DED的发病机制中至关重要,涉及多种细胞因子(如IL-1β, IL-6, TNF-α, IL-17, IFN-γ)、趋化因子和基质金属蛋白酶(如MMP-9)的失调[31]。LCN2作为一个已知的炎症调节因子,在系统性炎症中广泛表达[5]。特别是在常与DED(尤其是蒸发过强型DED)相关的睑缘角结膜炎(BKC)或睑板腺功能障碍(MGD)中,发现患者睑板腺分泌物中的LCN2水平升高,提示其可能参与了眼睑和眼表的慢性炎症过程[19]。考虑到DED的核心病理是炎症,并且LCN2在相关的眼表炎症疾病中被证实升高,推测LCN2很可能参与了DED的炎症循环。然而,目前直接检测DED患者泪液中LCN2水平及其与疾病严重程度或亚型关系的研究证据尚不充分,明确其在DED中的具体作用和作为生物标志物的潜力是未来的重要方向。
    3.1.2 角膜伤口愈合
        角膜上皮的修复是一个涉及细胞迁移、增殖、分化和细胞外基质重塑的复杂过程[30]。炎症反应在启动修复中不可或缺,但过度的炎症反应会阻碍愈合[32]。研究发现,LCN2在角膜上皮伤口愈合中似乎扮演着抑制性角色。在小鼠模型中,LCN2基因敲除(Lcn2−/−)显著加速了正常和糖尿病小鼠角膜上皮的伤口闭合速度[30]。这表明,在生理或病理条件下,伤口诱导产生的LCN2可能对上皮修复过程产生负面影响。其机制可能与调节炎症反应有关(如影响中性粒细胞功能,已知中性粒细胞焦亡释放的IL-1β会抑制上皮细胞迁移[33])或直接作用于上皮细胞的迁移/增殖能力。LCN2的表达还与IL-36受体(IL-36 receptor, IL-36R)信号通路相关联,IL-36R信号同样抑制角膜愈合,而IL-36R缺陷小鼠中LCN2表达增强但愈合加速,提示LCN2可能位于IL-36R信号下游或平行通路中,共同参与对愈合的负向调控[30]。因此,LCN2的上调可能是某些角膜愈合延迟(如糖尿病角膜病变)的病理因素之一,抑制LCN2可能成为促进角膜上皮修复的一种潜在策略。
    3.1.3 角膜炎
        与在无菌性伤口愈合中的抑制作用相反,LCN2在应对细菌性角膜炎,特别是PA感染时,发挥着保护性作用。这与其核心的先天免疫功能——通过螯合细菌铁载体来限制细菌生长高度一致。在PA角膜炎小鼠模型中,LCN2敲除导致角膜炎症状更严重,表现为临床评分更高、角膜内细菌载量增加以及更显著的中性粒细胞浸润[24]。机制上,LCN2的缺失改变了角膜上皮的炎症和抗菌反应:促炎因子IL-1β和TNF-α表达升高,而抗菌相关的细胞因子CXCL10和抗菌肽β-防御素-3(BD-3)的表达则降低。此外,LCN2还影响其他炎症介质如IL-17C、IL-6和CCL20的表达[24]。在细胞层面,LCN2有助于在感染早期促进巨噬细胞浸润,并在后期调节Th1和Th2细胞应答[24]。这种在角膜感染和无菌损伤愈合中截然相反的作用,显示了LCN2对免疫调节的双重功能。此外,角膜上皮细胞自身在感染刺激下(如PA角膜炎中通过IL-36α)上调LCN2的表达[24],这凸显了角膜上皮不仅是一个被动屏障,更是一个主动的免疫参与者。这种局部产生,并由浸润的中性粒细胞产生的LCN2加以补充,在病原体入侵的主要部位形成了一个集中的抗菌屏障,体现了常驻角膜细胞在全面免疫细胞浸润之前即启动“营养免疫”,从而有助于早期控制病原体。

3.2 葡萄膜炎

        葡萄膜炎是一种以眼内炎症为特征的疾病[34]。在研究LCN2在葡萄膜炎中的作用时,一项基于LPS诱导的大鼠内毒素性葡萄膜炎(EIU)模型的研究得出了令人意外的结果[15]。在该模型中,眼内注射LPS后,视网膜中LCN2的表达显著上调,尤其是在Müller细胞所在的区域(外核层)[15]。然而,与预期其可能加剧炎症相反,研究发现外源性给予(玻璃体腔注射)重组LCN2蛋白反而显著减轻了EIU的炎症程度,表现为临床评分降低、炎症细胞浸润减少、房水和视网膜中的蛋白渗漏及促炎因子(TNF-α, IL-6, MCP-1)水平均下降[15]。体外实验进一步证实,LCN2处理能够抑制LPS刺激的原代Müller细胞产生和分泌这些促炎因子。其机制被揭示为LCN2能够抑制NF-κB信号通路的关键步骤——p65亚基的磷酸化和核转位[15]。此外,在马的自身免疫性葡萄膜炎中[14],也观察到LCN2水平升高,提示其广泛参与葡萄膜炎的炎症过程。

3.3 青光眼

        青光眼是一类以进行性视神经损伤和RGC死亡为特征的神经退行性疾病,常伴有眼压升高[35]。其病理机制复杂,涉及机械应力、血管功能障碍、兴奋性毒性、神经营养因子缺乏、氧化应激以及神经炎症(主要由胶质细胞激活驱动)等多个方面[36]。小梁网功能障碍是导致眼内压升高的常见原因[37]。研究表明,LCN2在青光眼的病理过程中扮演着有害的、促炎性的角色,尤其是在急性高眼压模型中[16]。急性眼压升高后,大鼠视网膜和小鼠RGC/视网膜中LCN2的表达显著上调[38],并且外周血清LCN2水平也升高[16]。重要的是,LCN2的缺失或敲低能够显著减轻急性高眼压诱导的神经炎症损伤,抑制视网膜内固有免疫细胞(小胶质细胞和星形胶质细胞)的激活,并降低促炎细胞因子(如TNF-α、IL-1β)的水平[16]。通过抑制这一系列的神经炎症反应,LCN2敲低最终对RGC起到了神经保护作用,减少了RGC的丢失和凋亡,并改善了FVEP记录的视觉功能[16]。此外,另一项研究表明LCN2能够直接对RGC产生神经毒性作用[38]。这些结果表明,LCN2是急性青光眼损伤后神经炎症级联反应的关键介质,显著促进了免疫细胞浸润和随后的RGC死亡。血清LCN2水平与视网膜炎症严重程度具有相关性[16],提示LCN2可能作为反映急性青光眼眼内炎症强度的全身性生物标志物,甚至可能通过循环系统参与或加剧眼部病变。
        LCN2在急性高眼压和慢性青光眼中的作用既有共性,也存在差异。在急性高眼压中,LCN2上调迅速,是即刻、剧烈的神经炎症级联反应的一部分,涉及显著的血 - 视网膜屏障(blood-retinal barrier,BRB)破坏和外周免疫细胞大量涌入。而在慢性青光眼中,LCN2的上调表现得更为持久,助长进行性的、低度神经炎症和变性,且可能与视网膜内源性铁代谢失调和星形胶质细胞的持续反应性更紧密相关[26]。无论损伤是急性(眼压骤升)还是慢性(眼压持续升高),LCN2均作为视网膜神经炎症反应中一个共同且关键的参与者出现。它似乎充当了损伤相关分子模式(DAMP)或DAMP信号的放大器,触发或加剧BRB破坏、神经胶质细胞活化、细胞因子释放和免疫细胞募集[39] 。这一定位表明LCN2不仅是一个生物标志物,而且是不同形式青光眼视神经病变共有的致病性神经炎症环境的主动贡献者。

3.4 视网膜疾病

    3.4.1 糖尿病视网膜病变
        DR是糖尿病最常见的微血管并发症和神经退行性疾病,由高血糖引发的代谢紊乱、慢性低度炎症、氧化应激、VEGF过表达等多种因素驱动[40]。现有证据强烈表明,LCN2在DR的发病机制中扮演着核心的致病角色[40]。首先,LCN2水平在DR患者的玻璃体液中显著升高,并与VEGF水平及疾病活动性正相关[16]。在糖尿病动物模型和高糖处理的视网膜细胞中,LCN2表达也上调[23]。其次,LCN2直接参与DR的3个主要病理环节:1) 微血管病变,诱导视网膜血管内皮细胞凋亡,促进血管内皮细胞迁移、侵袭和血管生成(新生血管形成)[40];2) 神经退行性病变,损害视网膜光感受器细胞和神经元的功能[40];3) 视网膜炎症,LCN2分泌增加会招募炎症细胞,诱导促炎细胞因子产生,并通过抑制Caspase-1介导的焦亡通路促进视网膜血管内皮细胞的炎症性死亡。重要的是,在糖尿病大鼠模型中,通过AAV介导的shRNA敲低视网膜LCN2的表达,能够显著减轻视网膜损伤和血管功能障碍。这些发现共同将LCN2定位为连接糖尿病代谢紊乱与DR核心病理(血管损伤、神经变性、炎症)的关键分子枢纽,使其成为一个极具潜力的DR治疗靶点。
        VEGF是DR中新生血管形成和血管通透性增加的主要驱动因子。LCN2与VEGF之间存在协同作用,共同推动DR的病理进展[41]。在增殖性糖尿病视网膜病变 (PDR) 患者中观察到LCN2与VEGF水平之间存在相关性。PDR和糖尿病黄斑水肿 (DME) 患者玻璃体液中LCN2和VEGFA的水平也均高于对照组。在机制上,LCN2促进炎症,而炎症本身可以上调VEGF。反过来,VEGF也具有促炎效应。这可能形成一个正反馈回路,LCN2和VEGF在DR中相互放大炎症和血管生成驱动力。例如,LCN2可能募集炎症细胞,这些细胞随后分泌更多的VEGF;或者LCN2可能直接或间接增强内皮细胞对VEGF的反应性[41]
    3.4.2 年龄相关性黄斑变性
        年龄相关性黄斑变性 (age-related macular degeneration, AMD)是老年人视力丧失的主要原因,病理基础是RPE功能障碍、玻璃膜疣形成、慢性炎症和氧化应激,最终导致地图状萎缩(干性AMD)或脉络膜新生血管(湿性AMD)[42]。炎症反应,包括先天免疫、补体系统、炎症小体激活等,在AMD发病中起关键作用[23]。研究表明,LCN2在AMD,尤其是在干性AMD的病理生理过程中发挥有害作用。血浆LCN2水平在nAMD患者中升高,且与年龄、循环中性粒细胞数量以及黄斑纤维化相关[43]。在干性AMD的小鼠模型(如Cryba1基因敲除鼠)和人干性AMD样本中,RPE细胞的LCN2表达上调,特别是其同源二聚体形式显著增加[17]。机制研究揭示,LCN2在RPE细胞内扮演着关键的负面调控角色:它通过与自噬相关蛋白ATG4B结合,抑制其活性和LC3-Ⅱ酯化,从而阻断自噬流,损害了细胞清除功能;同时,LCN2的上调与RPE细胞中炎症小体的激活以及铁死亡通路的启动相关,进而促进氧化应激和铁稳态失衡[17]。LCN2在RPE中的上调可能由AKT2-IFNλ-STAT1和STING1信号通路介导[17]。特别需要指出的是,LCN2在第87位半胱氨酸残基处拥有一个未配对的半胱氨酸,这使其能够形成同源二聚体以及异源二聚体(如与MMP-9形成复合物)。这种二聚化能力是LCN2的一个关键独特性状,与许多其他脂质运载蛋白主要以单体形式发挥功能不同,LCN2同源二聚体已被证实参与AMD的发病过程。与LCN2单体相比,LCN2同源二聚体在人类AMD患者以及具有干性AMD样表型的小鼠模型(例如cryba1条件性敲除和基因敲除小鼠)中显著增加[17]。这种同源二聚体在RPE细胞中通过以下机制发挥致病作用:1)自噬功能失调,RPE细胞中LCN2同源二聚体的增加导致自噬减弱。LCN2与ATG4B结合形成LCN2-ATG4B-LC3-Ⅱ复合物,从而调节ATG4B活性和LC3-Ⅱ脂化,损害自噬清除功能。2)炎症小体激活,LCN2水平升高与RPE细胞中CGAS和STING1介导的炎症小体激活相关[17]。3)铁死亡诱导,LCN2导致RPE细胞铁稳态失衡。对LCN2水平升高的RPE细胞进行活细胞成像显示,脂质过氧化强度与炎症小体激活增加相关,表明发生了氧化应激诱导的铁死亡。此外,视网膜下注射LCN2同源二聚体可直接导致视网膜变性。这些发现将LCN2置于干性AMD病理的核心位置,连接了炎症、铁死亡和自噬障碍这三大关键通路,共同驱动RPE的功能障碍和死亡。针对LCN2(尤其是其同源二聚体)的干预,如使用中和抗体,已在动物模型中显示出恢复RPE自噬、抑制铁死亡并改善视网膜功能的潜力[17]
    3.4.3 视网膜缺血再灌注损伤
        视网膜缺血再灌注 (retinal ischemia-reperfusion ,RIR)损伤是多种视网膜血管性疾病(如视网膜动脉/静脉阻塞、糖尿病视网膜病变、早产儿视网膜病变等)的共同病理过程,导致RGC等神经元死亡和视功能损害,其机制涉及氧化应激、炎症、兴奋性毒性以及多种细胞死亡模式(凋亡、坏死、铁死亡等)[13]。在中央视网膜静脉阻塞患者的房水中观察到LCN2水平升高[41]。另有研究表明,LCN2在RIR后的视网膜中表达显著上调[12],并在此过程中发挥有害作用,加剧了RGC死亡和视功能损伤[13]。其关键致病机制在于促进RGC的铁死亡。在LCN2过表达的RIR小鼠模型中,观察到铁死亡的典型生化标志物变化,如谷胱甘肽(GSH)和谷胱甘肽过氧化物酶4(GPX4)水平下降,丙二醛(MDA)和铁蛋白轻链(FTL)水平升高,而使用铁死亡抑制剂能够显著减轻LCN2过表达所加剧的RGC死亡和视功能损害。同时,LCN2过表达也伴随着胶质细胞激活和促炎因子的上调。LCN2杂合敲除则能减轻RIR造成的RGC死亡和视网膜损伤。这些结果清晰地表明,LCN2在视网膜缺血再灌注损伤中扮演着关键致病角色,其通过诱导铁死亡途径和促进神经炎症的双重机制加剧RGC损伤。
    3.4.4 遗传性视网膜变性
        视网膜色素变性 (retinitis pigmentosa, RP) 是一组以进行性光感受器(主要是视杆细胞,随后是视锥细胞)变性为特征的遗传性视网膜疾病,常伴有慢性低度炎症[44]。光损伤模型常被用来研究光感受器死亡的机制[45]。研究发现,RP患者的血浆LCN2水平升高[12]。在常用的光诱导视网膜变性大鼠模型中,LCN2表达也显著上调。在这种急性光损伤模型中,LCN2被证实扮演促凋亡的角色[45]。机制上,光照诱导的LCN2上调通过增加ROS产生和激活促凋亡蛋白Bim,启动了光感受器细胞的线粒体凋亡通路。敲低LCN2能够减轻这些效应并保护光感受器[45]。然而,在另一种模拟Stargardt 病的Abca4−/−Rdh8−/−小鼠模型中,进行光刺激实验时,LCN2的缺失反而加剧了光诱导的炎症反应(小胶质细胞激活、促炎基因上调)和视网膜变性[12]。在该研究的体外部分,LCN2还显示出对人诱导多能干细胞来源的RPE(hiPS-RPE)具有抗氧化应激和抗LPS毒性的保护作用。这种在不同模型中出现的矛盾结果,凸显了LCN2在光感受器变性中作用的复杂性。它可能直接作用于光感受器(在急性强光下促进凋亡),也可能通过调节RPE或胶质细胞的炎症反应间接影响光感受器的生存(在慢性变性背景下的光应激中可能起抑制炎症的作用)。

4 争议与未来研究方向

        尽管对LCN2在眼科的研究日益深入,但仍存在一些悬而未决的问题和相互矛盾的发现,成为未来的研究方向。

4.1. 促炎与抗炎作用的矛盾

        最显著的争议在于LCN2在炎症中扮演的双重角色。它在急性青光眼[16]、AMD模型[43]、RIR[13]、DR[40] 以及特定光损伤模型[12]中表现为促炎作用;然而,在LPS诱导的EIU模型中却显示出抗炎作用[15],并且在细菌性角膜炎中发挥保护性免疫功能[46]。未来的研究需要阐明造成这种差异的原因,可能涉及:1) 刺激物类型(不同致病因素和环境下的功能差异);2) 关键响应细胞类型(RPE, Müller细胞, 小胶质细胞, 中性粒细胞等的功能差异);3) 疾病阶段(急性或慢性病程下的功能差异);4) LCN2分子形式(单体、二聚体、复合物的功能差异);5) 受体选择性(不同受体介导的信号通路);6) 下游信号通路的特异性激活(如NF-κB通路的抑制和激活,炎症小体、铁死亡通路的激活等)。

4.2. 促死亡与促生存作用的矛盾

      类似地,LCN2对细胞生存的影响也存在矛盾。它在光损伤[45]、RIR[13]、DR [47]中促进细胞死亡,但在EIU模型[15]和某些RPE细胞模型中又表现出保护作用。这可能与LCN2的载铁状态(apo-LCN2与holo-LCN2)通过SLC22A17受体介导产生显著不同的生物学效应有关[4]。holo-LCN2 (铁结合状态) 与 SLC22A17 结合后被内吞,释放铁离子,增加细胞内铁浓度,从而抑制细胞凋亡[48]。相反,apo-LCN2 (未结合铁状态) 与 SLC22A17 结合内吞后,会结合细胞内的铁载体,将铁离子转运出细胞,降低细胞内铁浓度,诱导促凋亡蛋白 BIM的表达,从而促进细胞凋亡[48]

4.3 LCN2的临床应用前景

    4.3.1 LCN2作为生物标志物的诊断潜力
        LCN2在多种眼科疾病中表现出显著的浓度变化,展现出作为生物标志物的潜力。在DR[16]、PDR、糖尿病黄斑水肿(DME)、急性青光眼及视神经炎等疾病中,患者眼内液或血清LCN2水平显著升高,且与疾病严重程度相关[12];而中浆性脉络膜视网膜病变(CSCR)患者血清LCN2则降低,提示其可用于疾病诊断、分期及预后评估。然而,临床应用仍需克服挑战,包括需通过大规模多中心研究验证其可靠性,并探索与其他生物标志物(如VEGF、炎症因子)联合构建诊断模型,以提高特异性和准确性。
    4.3.2 LCN2作为靶向治疗的潜力
        针对LCN2的治疗策略聚焦于抑制其病理作用或增强其保护功能。在慢性视网膜疾病(如AMD、DR、青光眼)中,抑制LCN2的单克隆抗体[49](如靶向同源二聚体)、小分子抑制剂(如ZINC-94/89)[49]及基因沉默技术(siRNA/AAV)已在动物模型中有效减轻炎症和细胞损伤。而在细菌性角膜炎等疾病中,增强LCN2的保护作用尚待探索。当前疗法多处于临床前阶段,未来需开发精准靶向病理形式或下游信号通路的药物,并优化眼内递送系统(如纳米载体、缓释技术)。

5 结论

         LCN2在眼科疾病中扮演复杂双重角色,其通过调控铁代谢、炎症反应、细胞死亡(铁死亡/凋亡)及血管生成等过程,参与青光眼、DR、AMD等多种眼病的进展。LCN2的功能高度依赖于病理环境和细胞类型,既可表现为促炎致病因子,也可能发挥保护作用,这种多面性可能与其分子形式、细胞来源及受体互作差异密切相关。目前,LCN2在眼内液或血液中的水平显示出作为疾病标志物的潜力,而靶向中和其致病形式(如特异性抗体)或调控下游通路(如铁死亡抑制)的实验性疗法已在小鼠模型中取得成效,但临床应用需精准设计。未来研究需进一步解析其作用网络,推动从机制到诊疗的转化突破。

声明


在论文撰写中无使用生成式人工智能。

利益冲突  

所有作者均声明不存在利益冲突。

开放获取声明

本文适用于知识共享许可协议(Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。

基金

1. 国家自然科学基金(82171080)、南京市医学科技发展项目(YKK23264)、南京医科大 学大学生创新训练计划项目(202310312053Z)。This work was supported by National Natural Science Foundation of China (82171080); Nanjing Medical Science and technology development Foundation (YKK23264); Undergraduate Innovation Training Program of Nanjing Medical University (202310312053Z).

参考文献

1.  Yang HH, Wang X, Li S, et al. Lipocalin family proteins and their diverse roles in cardiovascular disease[J]. Pharmacol Ther, 2023, 244: 108385. DOI: 10.1016/j.pharmthera.2023.108385.
2. Chandrasekaran P, Weiskirchen S, Weiskirchen R. Structure, functions, and implications of selected lipocalins in human disease[J]. Int J Mol Sci, 2024, 25(8): 4290. DOI: 10.3390/ijms25084290.
3. Bahmani P, Halabian R, Rouhbakhsh M, et al. Neutrophil Gelatinase-Associated Lipocalin induces the expression of heme oxygenase-1 and superoxide dismutase 1, 2[J]. Cell Stress Chaperones, 2010, 15(4): 395-403. DOI: 10.1007/s12192-009-0154-5.
4. Schröder SK, Gasterich N, Weiskirchen S, et al. Lipocalin 2 receptors: facts, fictions, and myths[J]. Front Immunol, 2023, 14: 1229885. DOI: 10.3389/fimmu.2023.1229885.
5. Asaf S, Maqsood F, Jalil J, et al. Lipocalin 2: not only a biomarker: a study of current literature and systematic findings of ongoing clinical trials[J]. Immunol Res, 2023, 71(3): 287-313. DOI: 10.1007/s12026-022-09352-2.
6. Abella V, Scotece M, Conde J, et al. The potential of lipocalin-2/NGAL as biomarker for inflammatory and metabolic diseases[J]. Biomarkers, 2015, 20(8): 565-571. DOI: 10.3109/1354750x.2015.1123354.
7. Guardado S, Ojeda-Juárez D, Kaul M, et al. Comprehensive review of lipocalin 2-mediated effects in lung inflammation[J]. Am J Physiol Lung Cell Mol Physiol, 2021, 321(4): L726-L733. DOI: 10.1152/ajplung.00080.2021.
8. Afridi R, Kim JH, Bhusal A, et al. Lipocalin-2 as a mediator of neuroimmune communication[J]. J Leukoc Biol, 2024, 116(2): 357-368. DOI: 10.1093/jleuko/qiad157.
9. Risinger WB, Matheson PJ, Franklin ME, et al. Plasma resuscitation restores glomerular hyaluronic acid and mitigates hemorrhage-induced glomerular dysfunction[J]. J Trauma Acute Care Surg, 2025, 99(1): 59-67. DOI: 10.1097/ta.0000000000004623.
10. Storm T, Burgoyne T, Dunaief JL, et al. Selective ablation of megalin in the retinal pigment epithelium results in megaophthalmos, macromelanosome formation and severe retina degeneration[J]. Invest Ophthalmol Vis Sci, 2019, 60(1): 322. DOI: 10.1167/iovs.18-25667.
11. Veth KN, Willer JR, Collery RF, et al. Mutations in zebrafish lrp2 result in adult-onset ocular pathogenesis that models myopia and other risk factors for glaucoma[J]. PLoS Genet, 2011, 7(2): e1001310. DOI: 10.1371/journal.pgen.1001310.
12. Parmar T, Parmar VM, Perusek L, et al. Lipocalin 2 plays an important role in regulating inflammation in retinal degeneration[J]. J Immunol, 2018, 200(9): 3128-3141. DOI: 10.4049/jimmunol.1701573.
13. Mei T, Wu J, Wu K, et al. Lipocalin 2 induces visual impairment by promoting ferroptosis in retinal ischemia-reperfusion injury[J]. Ann Transl Med, 2023, 11(1): 3. DOI: 10.21037/atm-22-3298.
14. Hofmaier F, Hauck SM, Amann B, et al. Changes in matrix metalloproteinase network in a spontaneous autoimmune uveitis model[J]. Invest Ophthalmol Vis Sci, 2011, 52(5): 2314. DOI: 10.1167/iovs.10-6475.
15. Tang W, Ma J, Gu R, et al. Lipocalin 2 suppresses ocular inflammation by inhibiting the activation of NF-κβ pathway in endotoxin-induced uveitis[J]. Cell Physiol Biochem, 2018, 46(1): 375-388. DOI: 10.1159/000488472.
16. Hu T, Meng S, Liu C, et al. LCN2 deficiency mitigates the neuroinflammatory damage following acute glaucoma[J]. Theranostics, 2025, 15(7): 2967-2990. DOI: 10.7150/thno.104752.
17. Gupta U, Ghosh S, Wallace CT, et al. Increased LCN2 (lipocalin 2) in the RPE decreases autophagy and activates inflammasome-ferroptosis processes in a mouse model of dry AMD[J]. Autophagy, 2023, 19(1): 92-111. DOI: 10.1080/15548627.2022.2062887.
18. Batsos G, Christodoulou E, Vartholomatos G, et al. Vitreous levels of Lipocalin-2 on patients with primary rhegmatogenous retinal detachment[J]. PLoS One, 2019, 14(12): e0227266. DOI: 10.1371/journal.pone.0227266.
19. Su J, Li H, Lin B, et al. Proteomic analysis of meibomian gland secretions in patients with blepharokeratoconjunctivitis[J]. Trans Vis Sci Tech, 2022, 11(12): 4. DOI: 10.1167/tvst.11.12.4.
20. Batsos G, Christodoulou E, Christou EE, et al. Vitreous inflammatory and angiogenic factors on patients with proliferative diabetic retinopathy or diabetic macular edema: the role of Lipocalin2[J]. BMC Ophthalmol, 2022, 22(1): 496. DOI: 10.1186/s12886-022-02733-z.
21. Ghosh S, Shang P, Yazdankhah M, et al. Activating the AKT2–nuclear factor-κB–lipocalin-2 axis elicits an inflammatory response in age-related macular degeneration[J]. J Pathol, 2017, 241(5): 583-588. DOI: 10.1002/path.4870.
22. Chun BY, Kim JH, Nam Y, et al. Pathological involvement of astrocyte-derived lipocalin-2 in the demyelinating optic neuritis[J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3691. DOI: 10.1167/iovs.15-16851.
23. Su X, Zhou P, Qi Y. Down-regulation of LCN2 attenuates retinal vascular dysfunction and caspase-1-mediated pyroptosis in diabetes mellitus[J]. Ann Transl Med, 2022, 10(12): 695. DOI: 10.21037/atm-22-2655.
24. Me R, Gao N, Zhang Y, et al. IL-36α enhances host defense against Pseudomonas aeruginosa keratitis in C57BL/6 mouse corneas[J]. J Immunol, 2021, 207(11): 2868-2877. DOI: 10.4049/jimmunol.2001246.
25. Tang W, Ma J, Gu R, et al. Light-induced lipocalin 2 facilitates cellular apoptosis by positively regulating reactive oxygen species/bim signaling in retinal degeneration[J]. Invest Ophthalmol Vis Sci, 2018, 59(15): 6014. DOI: 10.1167/iovs.18-25213.
26. Yoneshige A, Hagiyama M, Takashima Y, et al. Elevated hydrostatic pressure causes retinal degeneration through upregulating lipocalin-2[J]. Front Cell Dev Biol, 2021, 9: 664327. DOI: 10.3389/fcell.2021.664327.
27. Huang W, Liu Y, Li J, et al. Endoplasmic reticulum stress drives neuroinflammation through lipocalin 2 upregulation in retinal microglia after optic nerve injury[J]. Invest Ophthalmol Vis Sci, 2025, 66(5): 12. DOI: 10.1167/iovs.66.5.12.
28. Tang W, Zhai R, Ma J, et al. Lipocalin-2-mediated ferroptosis as a target for protection against light-induced photoreceptor degeneration[J]. Mol Med, 2025, 31(1): 190. DOI: 10.1186/s10020-025-01250-1.
29. Jiang H, Liu M, Yang W, et al. Activation of limbal epithelial proliferation is partly controlled by the ACE2-LCN2 pathway[J]. iScience, 2024, 27(8): 110534. DOI: 10.1016/j.isci.2024.110534.
30. Chen Q, Gao N, Yu FS. Interleukin-36 receptor signaling attenuates epithelial wound healing in C57BL/6 mouse corneas[J]. Cells, 2023, 12(12): 1587. DOI: 10.3390/cells12121587.
31. Zhang D, Chen T, Liang Q, et al. A first-in-human, prospective pilot trial of umbilical cord-derived mesenchymal stem cell eye drops therapy for patients with refractory non-Sjögren’s and Sjögren’s syndrome dry eye disease[J]. Stem Cell Res Ther, 2025, 16(1): 202. DOI: 10.1186/s13287-025-04292-8.
32. Bukowiecki A, Hos D, Cursiefen C, et al. Wound-healing studies in cornea and skin: parallels, differences and opportunities[J]. Int J Mol Sci, 2017, 18(6): 1257. DOI: 10.3390/ijms18061257.
33. Chen P, Zhang Z, Sakai L, et al. Neutrophil pyroptosis regulates corneal wound healing and post-injury neovascularisation[J]. Clinical & Translational Med, 2024, 14(11): e1762. DOI: 10.1002/ctm2.1762.
34. Denniston AK, Keane PA, Srivastava SK. Biomarkers and surrogate endpoints in uveitis: the impact of quantitative imaging[J]. Invest Ophthalmol Vis Sci, 2017, 58(6): BIO131. DOI: 10.1167/iovs.17-21788.
35. Fernández-Albarral JA, Ramírez AI, de Hoz R, et al. Glaucoma: from pathogenic mechanisms to retinal glial cell response to damage[J]. Front Cell Neurosci, 2024, 18: 1354569. DOI: 10.3389/fncel.2024.1354569.
36. Xu GT, Zhang JF, Tang L. Inflammation in diabetic retinopathy: possible roles in pathogenesis and potential implications for therapy[J]. Neural Regen Res, 2023, 18(5): 976. DOI: 10.4103/1673-5374.355743.
37. Cui N, He Y. Glaucomatous retinal ganglion cells: death and protection[J]. Int J Ophthalmol, 2025, 18(1): 160-167. DOI: 10.18240/ijo.2025.01.20.
38. Amin D, Kuwajima T. Differential retinal ganglion cell vulnerability, a critical clue for the identification of neuroprotective genes in glaucoma[J]. Front Ophthalmol, 2022, 2: 905352. DOI: 10.3389/fopht.2022.905352.
39. Garner MA, Strickland RG, Girkin CA, et al. Mechanisms of retinal ganglion cell injury following acute increases in intraocular pressure[J]. Front Ophthalmol, 2022, 2: 1007103. DOI: 10.3389/fopht.2022.1007103.
40. Zhang Y, Song X, Qi T, et al. Review of lipocalin-2-mediated effects in diabetic retinopathy[J]. Int Ophthalmol, 2024, 44(1): 78. DOI: 10.1007/s10792-024-03015-x.
41. Wang H, Lou H, Li Y, et al. Elevated vitreous Lipocalin-2 levels of patients with proliferative diabetic retinopathy[J]. BMC Ophthalmol, 2020, 20(1): 260. DOI: 10.1186/s12886-020-01462-5.
42. Ghosh S, Stepicheva N, Yazdankhah M, et al. The role of lipocalin-2 in age-related macular degeneration (AMD)[J]. Cell Mol Life Sci, 2020, 77(5): 835-851. DOI: 10.1007/s00018-019-03423-8.
43. Chen M, Yang N, Lechner J, et al. Plasma level of lipocalin 2 is increased in neovascular age-related macular degeneration patients, particularly those with macular fibrosis[J]. Immun Ageing, 2020, 17(1): 35. DOI: 10.1186/s12979-020-00205-w.
44. John M, Martinez-Fernandez Dela Camara C, Staurenghi F, Fischer MD, Xue K, MacLaren RE. Slowly degenerating retina of Rpgr-deficient mouse remain immunologically quiescent. Investigative Ophthalmology & Visual Science 2024, 65(7): 5051-5051. 
45. Tang W, Ma J, Gu R, et al. Light-induced lipocalin 2 facilitates cellular apoptosis by positively regulating reactive oxygen species/bim signaling in retinal degeneration[J]. Invest Ophthalmol Vis Sci, 2018, 59(15): 6014. DOI: 10.1167/iovs.18-25213.
46. Me R. LCN-2 enhances host defense against Pseudomonas aeruginosa infection in C57BL/6 Mouse Corneas[J]. Investigative Ophthalmology & Visual Science, 2023, 64(8): 1717-1717.
47. Cabedo Martinez AI, Weinhäupl K, Lee WK, et al. Biochemical and structural characterization of the interaction between the siderocalin NGAL/LCN2 (neutrophil gelatinase-associated lipocalin/lipocalin 2) and the N-terminal domain of its endocytic receptor SLC22A17[J]. J Biol Chem, 2016, 291(6): 2917-2930. DOI: 10.1074/jbc.m115.685644.
48. Schröder SK, Gasterich N, Weiskirchen S, et al. Lipocalin 2 receptors: facts, fictions, and myths[J]. Front Immunol, 2023, 14: 1229885. DOI: 10.3389/fimmu.2023.1229885.
49. Wang L, Zhang L, Wang K, et al. Microglial Lcn2 knockout enhances chronic intracerebral hemorrhage recovery by restoring myelin and reducing inflammation[J]. Theranostics, 2025, 15(10): 4763-4784. DOI: 10.7150/thno.109440.

相关文章