1. Yang HH, Wang X, Li S, et al. Lipocalin family proteins and their diverse roles in cardiovascular disease[J]. Pharmacol Ther, 2023, 244: 108385. DOI: 10.1016/j.pharmthera.2023.108385.
2. Chandrasekaran P, Weiskirchen S, Weiskirchen R. Structure, functions, and implications of selected lipocalins in human disease[J]. Int J Mol Sci, 2024, 25(8): 4290. DOI: 10.3390/ijms25084290.
3. Bahmani P, Halabian R, Rouhbakhsh M, et al. Neutrophil Gelatinase-Associated Lipocalin induces the expression of heme oxygenase-1 and superoxide dismutase 1, 2[J]. Cell Stress Chaperones, 2010, 15(4): 395-403. DOI: 10.1007/s12192-009-0154-5.
4. Schröder SK, Gasterich N, Weiskirchen S, et al. Lipocalin 2 receptors: facts, fictions, and myths[J]. Front Immunol, 2023, 14: 1229885. DOI: 10.3389/fimmu.2023.1229885.
5. Asaf S, Maqsood F, Jalil J, et al. Lipocalin 2: not only a biomarker: a study of current literature and systematic findings of ongoing clinical trials[J]. Immunol Res, 2023, 71(3): 287-313. DOI: 10.1007/s12026-022-09352-2.
6. Abella V, Scotece M, Conde J, et al. The potential of lipocalin-2/NGAL as biomarker for inflammatory and metabolic diseases[J]. Biomarkers, 2015, 20(8): 565-571. DOI: 10.3109/1354750x.2015.1123354.
7. Guardado S, Ojeda-Juárez D, Kaul M, et al. Comprehensive review of lipocalin 2-mediated effects in lung inflammation[J]. Am J Physiol Lung Cell Mol Physiol, 2021, 321(4): L726-L733. DOI: 10.1152/ajplung.00080.2021.
8. Afridi R, Kim JH, Bhusal A, et al. Lipocalin-2 as a mediator of neuroimmune communication[J]. J Leukoc Biol, 2024, 116(2): 357-368. DOI: 10.1093/jleuko/qiad157.
9. Risinger WB, Matheson PJ, Franklin ME, et al. Plasma resuscitation restores glomerular hyaluronic acid and mitigates hemorrhage-induced glomerular dysfunction[J]. J Trauma Acute Care Surg, 2025, 99(1): 59-67. DOI: 10.1097/ta.0000000000004623.
10. Storm T, Burgoyne T, Dunaief JL, et al. Selective ablation of megalin in the retinal pigment epithelium results in megaophthalmos, macromelanosome formation and severe retina degeneration[J]. Invest Ophthalmol Vis Sci, 2019, 60(1): 322. DOI: 10.1167/iovs.18-25667.
11. Veth KN, Willer JR, Collery RF, et al. Mutations in zebrafish lrp2 result in adult-onset ocular pathogenesis that models myopia and other risk factors for glaucoma[J]. PLoS Genet, 2011, 7(2): e1001310. DOI: 10.1371/journal.pgen.1001310.
12. Parmar T, Parmar VM, Perusek L, et al. Lipocalin 2 plays an important role in regulating inflammation in retinal degeneration[J]. J Immunol, 2018, 200(9): 3128-3141. DOI: 10.4049/jimmunol.1701573.
13. Mei T, Wu J, Wu K, et al. Lipocalin 2 induces visual impairment by promoting ferroptosis in retinal ischemia-reperfusion injury[J]. Ann Transl Med, 2023, 11(1): 3. DOI: 10.21037/atm-22-3298.
14. Hofmaier F, Hauck SM, Amann B, et al. Changes in matrix metalloproteinase network in a spontaneous autoimmune uveitis model[J]. Invest Ophthalmol Vis Sci, 2011, 52(5): 2314. DOI: 10.1167/iovs.10-6475.
15. Tang W, Ma J, Gu R, et al. Lipocalin 2 suppresses ocular inflammation by inhibiting the activation of NF-κβ pathway in endotoxin-induced uveitis[J]. Cell Physiol Biochem, 2018, 46(1): 375-388. DOI: 10.1159/000488472.
16. Hu T, Meng S, Liu C, et al. LCN2 deficiency mitigates the neuroinflammatory damage following acute glaucoma[J]. Theranostics, 2025, 15(7): 2967-2990. DOI: 10.7150/thno.104752.
17. Gupta U, Ghosh S, Wallace CT, et al. Increased LCN2 (lipocalin 2) in the RPE decreases autophagy and activates inflammasome-ferroptosis processes in a mouse model of dry AMD[J]. Autophagy, 2023, 19(1): 92-111. DOI: 10.1080/15548627.2022.2062887.
18. Batsos G, Christodoulou E, Vartholomatos G, et al. Vitreous levels of Lipocalin-2 on patients with primary rhegmatogenous retinal detachment[J]. PLoS One, 2019, 14(12): e0227266. DOI: 10.1371/journal.pone.0227266.
19. Su J, Li H, Lin B, et al. Proteomic analysis of meibomian gland secretions in patients with blepharokeratoconjunctivitis[J]. Trans Vis Sci Tech, 2022, 11(12): 4. DOI: 10.1167/tvst.11.12.4.
20. Batsos G, Christodoulou E, Christou EE, et al. Vitreous inflammatory and angiogenic factors on patients with proliferative diabetic retinopathy or diabetic macular edema: the role of Lipocalin2[J]. BMC Ophthalmol, 2022, 22(1): 496. DOI: 10.1186/s12886-022-02733-z.
21. Ghosh S, Shang P, Yazdankhah M, et al. Activating the AKT2–nuclear factor-κB–lipocalin-2 axis elicits an inflammatory response in age-related macular degeneration[J]. J Pathol, 2017, 241(5): 583-588. DOI: 10.1002/path.4870.
22. Chun BY, Kim JH, Nam Y, et al. Pathological involvement of astrocyte-derived lipocalin-2 in the demyelinating optic neuritis[J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3691. DOI: 10.1167/iovs.15-16851.
23. Su X, Zhou P, Qi Y. Down-regulation of LCN2 attenuates retinal vascular dysfunction and caspase-1-mediated pyroptosis in diabetes mellitus[J]. Ann Transl Med, 2022, 10(12): 695. DOI: 10.21037/atm-22-2655.
24. Me R, Gao N, Zhang Y, et al. IL-36α enhances host defense against Pseudomonas aeruginosa keratitis in C57BL/6 mouse corneas[J]. J Immunol, 2021, 207(11): 2868-2877. DOI: 10.4049/jimmunol.2001246.
25. Tang W, Ma J, Gu R, et al. Light-induced lipocalin 2 facilitates cellular apoptosis by positively regulating reactive oxygen species/bim signaling in retinal degeneration[J]. Invest Ophthalmol Vis Sci, 2018, 59(15): 6014. DOI: 10.1167/iovs.18-25213.
26. Yoneshige A, Hagiyama M, Takashima Y, et al. Elevated hydrostatic pressure causes retinal degeneration through upregulating lipocalin-2[J]. Front Cell Dev Biol, 2021, 9: 664327. DOI: 10.3389/fcell.2021.664327.
27. Huang W, Liu Y, Li J, et al. Endoplasmic reticulum stress drives neuroinflammation through lipocalin 2 upregulation in retinal microglia after optic nerve injury[J]. Invest Ophthalmol Vis Sci, 2025, 66(5): 12. DOI: 10.1167/iovs.66.5.12.
28. Tang W, Zhai R, Ma J, et al. Lipocalin-2-mediated ferroptosis as a target for protection against light-induced photoreceptor degeneration[J]. Mol Med, 2025, 31(1): 190. DOI: 10.1186/s10020-025-01250-1.
29. Jiang H, Liu M, Yang W, et al. Activation of limbal epithelial proliferation is partly controlled by the ACE2-LCN2 pathway[J]. iScience, 2024, 27(8): 110534. DOI: 10.1016/j.isci.2024.110534.
30. Chen Q, Gao N, Yu FS. Interleukin-36 receptor signaling attenuates epithelial wound healing in C57BL/6 mouse corneas[J]. Cells, 2023, 12(12): 1587. DOI: 10.3390/cells12121587.
31. Zhang D, Chen T, Liang Q, et al. A first-in-human, prospective pilot trial of umbilical cord-derived mesenchymal stem cell eye drops therapy for patients with refractory non-Sjögren’s and Sjögren’s syndrome dry eye disease[J]. Stem Cell Res Ther, 2025, 16(1): 202. DOI: 10.1186/s13287-025-04292-8.
32. Bukowiecki A, Hos D, Cursiefen C, et al. Wound-healing studies in cornea and skin: parallels, differences and opportunities[J]. Int J Mol Sci, 2017, 18(6): 1257. DOI: 10.3390/ijms18061257.
33. Chen P, Zhang Z, Sakai L, et al. Neutrophil pyroptosis regulates corneal wound healing and post-injury neovascularisation[J]. Clinical & Translational Med, 2024, 14(11): e1762. DOI: 10.1002/ctm2.1762.
34. Denniston AK, Keane PA, Srivastava SK. Biomarkers and surrogate endpoints in uveitis: the impact of quantitative imaging[J]. Invest Ophthalmol Vis Sci, 2017, 58(6): BIO131. DOI: 10.1167/iovs.17-21788.
35. Fernández-Albarral JA, Ramírez AI, de Hoz R, et al. Glaucoma: from pathogenic mechanisms to retinal glial cell response to damage[J]. Front Cell Neurosci, 2024, 18: 1354569. DOI: 10.3389/fncel.2024.1354569.
36. Xu GT, Zhang JF, Tang L. Inflammation in diabetic retinopathy: possible roles in pathogenesis and potential implications for therapy[J]. Neural Regen Res, 2023, 18(5): 976. DOI: 10.4103/1673-5374.355743.
37. Cui N, He Y. Glaucomatous retinal ganglion cells: death and protection[J]. Int J Ophthalmol, 2025, 18(1): 160-167. DOI: 10.18240/ijo.2025.01.20.
38. Amin D, Kuwajima T. Differential retinal ganglion cell vulnerability, a critical clue for the identification of neuroprotective genes in glaucoma[J]. Front Ophthalmol, 2022, 2: 905352. DOI: 10.3389/fopht.2022.905352.
39. Garner MA, Strickland RG, Girkin CA, et al. Mechanisms of retinal ganglion cell injury following acute increases in intraocular pressure[J]. Front Ophthalmol, 2022, 2: 1007103. DOI: 10.3389/fopht.2022.1007103.
40. Zhang Y, Song X, Qi T, et al. Review of lipocalin-2-mediated effects in diabetic retinopathy[J]. Int Ophthalmol, 2024, 44(1): 78. DOI: 10.1007/s10792-024-03015-x.
41. Wang H, Lou H, Li Y, et al. Elevated vitreous Lipocalin-2 levels of patients with proliferative diabetic retinopathy[J]. BMC Ophthalmol, 2020, 20(1): 260. DOI: 10.1186/s12886-020-01462-5.
42. Ghosh S, Stepicheva N, Yazdankhah M, et al. The role of lipocalin-2 in age-related macular degeneration (AMD)[J]. Cell Mol Life Sci, 2020, 77(5): 835-851. DOI: 10.1007/s00018-019-03423-8.
43. Chen M, Yang N, Lechner J, et al. Plasma level of lipocalin 2 is increased in neovascular age-related macular degeneration patients, particularly those with macular fibrosis[J]. Immun Ageing, 2020, 17(1): 35. DOI: 10.1186/s12979-020-00205-w.
44. John M, Martinez-Fernandez Dela Camara C, Staurenghi F, Fischer MD, Xue K, MacLaren RE. Slowly degenerating retina of Rpgr-deficient mouse remain immunologically quiescent. Investigative Ophthalmology & Visual Science 2024, 65(7): 5051-5051.
45. Tang W, Ma J, Gu R, et al. Light-induced lipocalin 2 facilitates cellular apoptosis by positively regulating reactive oxygen species/bim signaling in retinal degeneration[J]. Invest Ophthalmol Vis Sci, 2018, 59(15): 6014. DOI: 10.1167/iovs.18-25213.
46. Me R. LCN-2 enhances host defense against Pseudomonas aeruginosa infection in C57BL/6 Mouse Corneas[J]. Investigative Ophthalmology & Visual Science, 2023, 64(8): 1717-1717.
47. Cabedo Martinez AI, Weinhäupl K, Lee WK, et al. Biochemical and structural characterization of the interaction between the siderocalin NGAL/LCN2 (neutrophil gelatinase-associated lipocalin/lipocalin 2) and the N-terminal domain of its endocytic receptor SLC22A17[J]. J Biol Chem, 2016, 291(6): 2917-2930. DOI: 10.1074/jbc.m115.685644.
48. Schröder SK, Gasterich N, Weiskirchen S, et al. Lipocalin 2 receptors: facts, fictions, and myths[J]. Front Immunol, 2023, 14: 1229885. DOI: 10.3389/fimmu.2023.1229885.
49. Wang L, Zhang L, Wang K, et al. Microglial Lcn2 knockout enhances chronic intracerebral hemorrhage recovery by restoring myelin and reducing inflammation[J]. Theranostics, 2025, 15(10): 4763-4784. DOI: 10.7150/thno.109440.