返回

喉罩复合七氟醚麻醉在小儿门诊全身麻醉眼底荧光素造影检查中的应用

阅读量:7186
DOI:10.3978/j.issn.1000-4432.2022.05.11
发布日期:2022-11-22
作者:
林艺全 ,沈卫华 ,张睿 ,梁耀忆 ,谢祝斌 ,甘小亮
展开更多

关键词

七氟醚
喉罩
眼底荧光造影
小儿门诊麻醉

摘要

目的:观察喉罩通气吸入七氟醚麻醉在小儿眼底荧光素造影检查(fundus fluorescein angiography,FFA)期间眼位情况、眼球运动的发生率和丙泊酚调整眼位的有效率。方法:回顾性分析2018年6月至2019年12月七氟醚麻醉下接受FFA的儿童的病例资料,记录检查开始时眼位分级、检查中眼球运动发生率、丙泊酚调整眼位的有效率、麻醉后恢复自主活动时间以及不良事件。结果:纳入1~9岁患儿54例,检查开始时42.6%(23/54)的患者眼位1级,51.9%(28/54)的患者眼位2级,5.6%(3/54)的患者眼位3级,检查中眼球运动发生率为61.1%(33/54)。13%(7/54)的患儿需丙泊酚干预,丙泊酚1 mg/kg纠正眼位的有效率为100%。患儿麻醉后恢复正常活动的平均时间为24.4 min,未发生不良事件。结论:喉罩复合七氟醚的麻醉可为门诊小儿眼底荧光造影提供相对满意的麻醉质量,患者在麻醉后可迅速恢复日常活动,丙泊酚可迅速纠正检查中眼位不正。

全文

      小儿玻璃体视网膜疾病常由视网膜血管系统病变引起相关,视网膜周边血管评估是疾病诊断、病情分期、治疗效果判断的重要依据[1-3]。视网膜血管眼底荧光素造影检查(fundus fluorescein angiography,FFA)能更好地观察病情,但检查过程需接触角膜,并要求患者眼球静止不动,对儿童配合度的要求较高,6月龄以下婴儿可在镇静下使用“飞行婴儿”体位完成检查,而较大的儿童需要在全身麻醉下仰卧位完成检查[4-6]。然而,研究[7]显示:全身麻醉下行小儿白内障手术,术中眼球运动发生率为100%,全身麻醉不能完全抑制眼科手术中的眼球运动。七氟醚是小儿全身麻醉常用诱导及维持药物,七氟醚起效迅速,苏醒快速,特别适合门诊小儿全身麻醉诱导和维持[8-9]。 中山大学中山眼科中心在小儿全身麻醉检查室常规使用丙泊酚复合七氟醚吸入麻醉诱导,放置喉罩后保留自主呼吸,以七氟醚维持麻醉的方式进 行小儿FFA麻醉,检查中发生眼位偏移时可使用丙泊酚迅速加深麻醉以改善眼位。本研究将观察在此麻醉方式下检查开始时眼位、检查中是否发生眼球运动、丙泊酚改善眼位偏移的有效性。

1 对象与方法

1.1 对象

      本研究经中山大学中山眼科中心医学伦理委 员会批准,获得患儿监护人同意。回顾性分析 2018年6月至2019年12月全身麻醉下接受FFA检查的患儿的病例资料。纳入标准:美国麻醉医师协会(American Social of Anesthesiologists,ASA)分级标准1~2级患儿;在中山大学中山眼科中心行门诊全身麻醉FFA。排除标准:患儿具有神经精神疾病,例如神经精神发育迟缓;近2周具有上呼吸道感染病史。

1.2 方法

      记录患者一般资料、开始检查时眼位等级、眼球运动情况、丙泊酚纠正眼位偏移的有效性、麻醉后恢复正常活动时间等。
1.2.1 麻醉方法
      患儿在门诊等候区开放静脉通路,麻醉前给予戊乙奎醚0.01mg/kg。患儿由1名照料者陪伴进入检查室后平躺于检查床上,父母可以陪伴在一旁并任何方式安慰患儿,告知患儿在父母陪伴下入睡,醒来时父母即在身旁。患儿接受2mg/kg丙 泊酚静脉诱导后与父母分离。监测患者心电图、 脉搏氧饱和度、呼气末二氧化碳( P E TC O 2 )。 患儿入睡后接受面罩吸入七氟醚(5%,O2 6 L/min) 诱导,托举下颌无反应后置入相应型号喉罩。吸入2.5%~3.5%七氟醚维持麻醉,麻醉中不使用肌肉松弛剂,呼吸方式为自主呼吸,必要时手控辅助呼吸, 将PETCO2维持于35~50 mmHg(1 mmHg=0.133 kPa)。 静脉注射托烷司琼0.1 mg/kg,地塞米松0.2 mg/kg 用于预防麻醉后恶心呕吐。检查结束后立刻关闭 七氟醚挥发罐,患儿潮气量6mL/kg以上时拔除喉 罩,并将患儿侧卧,转运至检查室麻醉后复苏室 (post-anesthesia care unit,PACU)吸氧、监测脉搏氧饱和度、心率。 

1.2.2 眼位评分与眼位偏移纠正

      根据既往研究[10]将眼位分为3个等级,1级为角膜中心点位于内外眦连线,2级为角膜下缘或上缘未越过内外眦连线,3级为角膜下缘或上缘越过内外眦连线。记录检查开始时、检查中眼位情况。检查中若眼位评分变动一个等级则视为发生眼球运动。眼位评分3级或检查医师需迅速回复眼位时给予患者丙泊酚1 mg/kg加深麻醉,使用丙泊酚后眼位改善至少1个等级视为有效。

1.2.3 麻醉复苏

      患儿在PACU持续接受面罩吸氧(2 L/min), 监测SpO2、ECG。患儿接受不唤醒复苏方式,由家属陪伴复苏,至患儿自然苏醒。改良Aldrete评分≥9时,允许患儿下地行走并饮水。

1.3 统计学处理

     采用SPSS24.0统计学软件进行数据分析。计量数据以均数±标准差(x±s)或中位数(范围)表示,计量以个数(百分比)表示。组间比较采用秩和检 验。P<0.05为差异有统计学意义。

2 结果

      纳入54例患儿,年龄1~9(3.8±1.9)岁,体重为 (15.6±4.5) kg,麻醉时间为(43.4±8.5) min,检查时间为 (35.8±8.0) min,苏醒时间为(19.2±3.0) min,麻醉后 恢复正常活动时间为(24.4±3.5) min。检查开始时, 眼位1级组23例,眼位2级组28例,眼位3级组3例 (表1)。检查中眼球运动发生率为61.1%(33/54), 其 中4例因检查中眼位变为3级需要丙泊酚干预 (表2)。87%(47/54)的患者可在全凭七氟醚维持麻醉 下完成检查,13%(7/54)的患者需丙泊酚干预,丙 泊酚干预有效率为100%。较小的年龄和较低的体重 和眼球运动相关(分别P=0.002、P=0.001;表3)。

表1 不同眼位组患者一般资料和时间对比
Table 1 Comparisons of characteristics and durations in difffferent eye position groups

20230208152852_0707.png

表2 全凭七氟醚维持组与丙泊酚纠正组患者一般资料和生命体征对比
Table 2 Comparisons of Characteristics and vital signs between total sevoflurane group and propofol correction group

20230208153001_1608.png

3 讨论

      本研究发现全凭七氟醚维持麻醉可使 87% 的患儿完成FFA检查,检查中眼球运动发生率为 61.1%,仅13%的患儿眼位需干预。眼位2级以上可完成眼底造影检查;患儿可在麻醉后可迅速恢复自主活动;较小的年龄或较低的体重患儿检查眼球运动较为活跃。 
      FFA常用于儿童眼底病检查,以帮助了解疾病诊断、进展程度,6月龄以上儿童通常在全身麻醉下完成检查[4]。既往研究[7]提示:先天性白内障手术麻醉中不使用肌肉松弛剂,眼球运动发生率 为100%。门诊检查患儿需尽可能使用较少种类药物,以加快麻醉后恢复,本研究麻醉维持仅使用七氟醚吸入。当眼位评分为2级时,多数患儿仍可完成检查。检查中13%的患儿需要对眼位进行干预,本研究发现使用1 mg/kg丙泊酚加深麻醉能迅速纠正患儿眼位。
      眼球运动机制较为复杂,动眼神经为颅神经[11-13],Kook等[11]认为眼位偏离中心情况可反映 麻醉深度,因此眼位偏移可能与麻醉深度不足有关。有研究[7]使用小剂量维库溴铵抑制术中眼球运动,然而门诊检查麻醉中使用并非最优选择。本研究中,患儿的麻醉维持主要通过自主呼吸吸入七氟醚,气体的有效交换是此麻醉维持方式下麻醉深度的保证,随着年龄增长,小儿呼吸系统胸外呼吸死腔比例降低[14]。呼吸死腔/潮气量比例在较小体重儿童明显升高[15],较低年龄患儿在此麻醉维持方式下,可能出现气体有效交换不足导致麻醉深度不足,从而出现眼位偏移。丙泊酚能迅速加深麻醉,使眼球居中,但同时可能导致一过性呼吸抑制[16-17]。  
      声门上气道装置可替代气管插管进行气道管 理[18],无辅助自主通气模式可用于门诊手术声门上气道工具的通气管理,然而较长时间通气后, 此模式可能导致通气不足、气体交换无效和呼吸 肌疲劳,而喉罩的气道密闭性提高使得通过声门上气道工具加压辅助呼吸成为可能[19]。因此喉罩既可以保留自主呼吸也可以进行辅助呼吸[20],确保患儿检查过程中通气和氧供且无需中断检查。 丙泊酚代谢迅速,所有患儿均在麻醉后快速恢复自主活动。
      门诊眼科检查全身麻醉患者需要一定的麻醉深度以维持眼位相对居中且固定,又需要快速复苏以确保出院后安全,本院采用经喉罩吸入七氟醚的麻醉维持方式,既可提供较深麻醉深度,又可实现快速复苏,单次剂量丙泊酚可迅速加深麻醉以抑制眼球运动,七氟醚和丙泊酚均为短效药 物,适合于小儿门诊眼科检查的麻醉维持和快速复苏;喉罩辅助通气能确保患者气道通畅,必要时由麻醉医师进行辅助呼吸且不中断检查,值得在门诊检查中推广。

开放获取声明

      本文适用于知识共享许可协议 (Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、 发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、 仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/

基金

1、国家自然科学基金 (81901995)。This work was supported by the National Natural Science Foundation of China ((81901995)

参考文献

1、Templeton TW, Hoke LK, Templeton LB, et al. A comparison of 3 ventilation strategies in children younger than 1 year using a Proseal laryngeal mask airway: a randomized controlled trial[ J]. J Clin Anesth, 2016, 35: 502-508.
2、Moharana S, Jain D, Bhardwaj N, et al. Pressure support ventilation-pro decreases propofol consumption and improves postoperative oxygenation index compared with pressure-controlled ventilation in children undergoing ambulatory surgery: a randomized controlled trial[ J]. Can J Anaesth, 2020, 67(4): 445-451.
3、Chaki T, Tachibana S, Kumita S, et al. Head rotation reduces oropharyngeal leak pressure of the i-gel and LMA? Supreme? in paralyzed, anesthetized patients: A randomized trial[ J]. Anesth Analg, 2021, 132(3): 818-826.
4、 Schick A, Driver B, Moore JC, et al. Randomized clinical trial comparing procedural amnesia and respiratory depression between moderate and deep sedation with propofol in the emergency department[ J]. Acad Emerg Med, 2019, 26(4): 364-374.
5、 Jiang J, Jiao Y, Gao P, et al. Propofol differentially induces unconsciousness and respiratory depression through distinct interactions between GABAA receptor and GABAergic neuron in corresponding nuclei[ J]. Acta Biochim Biophys Sin (Shanghai), 2021, 53(8): 1076-1087.
6、Goenaga-Diaz EJ, Smith LD, Pecorella SH, et al. A comparison of the breathing apparatus deadspace associated with a supraglottic airway and endotracheal tube using volumetric capnography in young children[ J]. Korean J Anesthesiol, 2021, 74(3): 218-225.
7、King MR, Feldman JM. Optimal management of apparatus dead space in the anesthetized infant[ J]. Paediatr Anaesth, 2017, 27(12): 1185-1192.
8、Hariharan P, Balzer JR , Anetakis K, et al. Electrophysiology of extraocular cranial nerves: oculomotor, trochlear, and abducens nerve[ J]. J Clin Neurophysiol, 2018, 35(1): 11-15.
9、Müller TJ. Ocular movement and nystagmus: basics and clinical diagnosis[ J]. HNO, 2020, 68(5): 313-323.
10、Kook KH, Chung SA, Park S, et al. Use of the bispectral index to predict eye position of children during general anesthesia[ J]. Korean J Ophthalmol, 2018, 32(3): 234-240.
11、Cao Q, Lin Y, Xie Z, et al. Comparison of sedation by intranasal dexmedetomidine and oral chloral hydrate for pediatric ophthalmic examination[ J]. Paediatr Anaesth, 2017, 27(6): 629-636.
12、 Fayed MA, Chen TC. Pediatric intraocular pressure measurements: Tonometers, central corneal thickness, and anesthesia[ J]. Surv Ophthalmol, 2019, 64(6): 810-825.
13、 Juhász M, Molnár L, Fülesdi B, et al. Effect of sevoflurane on systemic and cerebral circulation, cerebral autoregulation and CO2 reactivity[ J]. BMC Anesthesiol, 2019, 19(1): 109.
14、刘飞, 彭夏莹, 梁鹏, 等. 低剂量维库溴铵在小儿眼科手术中矫正眼球偏心的临床观察[ J]. 中华医学杂志, 2015, 95(4): 286-288.
LIU Fei, PENG Xiaying, LIANG Peng, et al. Effectiveness and safety of low-dose vecuronium on globe position of pediatric patients in ocular surgery[ J]. National Medical Journal of China, 2015, 95(4): 286-288.
15、Mao J, Shao Y, Lao J, et al. Ultra-wide-field imaging and intravenous fundus fluorescein angiography in infants with retinopathy of prematurity[ J]. Retina, 2020, 40(12): 2357-2365.
16、Fung TH, Yusuf IH, Smith LM, et al. Outpatient ultra wide-field intravenous fundus fluorescein angiography in infants using the Optos P200MA scanning laser ophthalmoscope[ J]. Br J Ophthalmol, 2014, 98(3): 302-304.
17、Fung TH, Yusuf IH, Xue K, et al. Heidelberg Spectralis ultra-widefield fundus fluorescein angiography in infants[ J]. Am J Ophthalmol, 2015, 159(1): 78-84.e1-2.
18、 Ekinci DY, Vural AD, Bayramoglu SE, et al. Assessment of vascular leakage and its development with FFA among patients treated with intravitreal anti-VEGF due to aggressive posterior ROP[ J]. Int Ophthalmol, 2019, 39(12): 2697-2705.
19、Chee RI, Gupta MP, Valikodath NG, et al. Evaluation of potential systemic adverse events related to fluorescein angiography in pediatric patients[ J]. Ophthalmol Retina, 2020, 4(6): 595-601.
20、Temkar S, Azad SV, Chawla R, et al. Ultra-widefield fundus fluorescein angiography in pediatric retinal vascular diseases[ J]. Indian J Ophthalmol, 2019, 67(6): 788-794.

相关文章