在裂隙灯检查中通常没有异常表现,眼球表面看似很“健康”,但神经性疼痛可能是干眼综合征的一部分。在这种情况下,可能出现角膜表面着色、泪膜渗透压异常以及干眼或其他导致角膜神经异常的眼表结构性疾病[10]。通过活体共聚焦显微镜(in vivo confocal microscope,IVCM)检查,角膜神经病变的患者有角膜上皮下基底层神经纤维病变:角膜神经纤维密度降低、弯曲度增加、神经纤维呈串珠样改变、粗大的神经纤维瘤等[36]。其中,神经纤维密度的降低程度与眼表炎症、疾病严重程度正相关[37]。
自体血清在干眼及角膜神经病变方面作用显著[44]。血清中富含神经生长因子,其可促进神经再生和修复神经功能[45]。自体血清治疗主要是针对慢性炎症导致的神经异常性疼痛。含血清制剂的人工泪液富含多种神经生长因子和上皮生长因子,如神经生长因子(never growth factor,NGF)、胰岛素样生长因子-1(insulin-like growth factor-1,IGF-1)、转化生长因子β (transfor ming grow th factor-β,TGF-β)、纤维连接蛋白、P物质、表皮生长因子[46-47]等,其通过促进角膜神经干细胞激活、增殖、分化并适应眼表微环境。
6.2.4 辅助器械
通过湿房镜的佩戴能有效保持局部泪液量、修复泪膜稳定性、改善眼表微环境。治疗性角膜绷带镜、巩膜镜、特别是人工替代眼表生态系统(Replacement of the Ocular Surface Ecosystem,PROSE)[48]可有效治疗屈光手术后NCP。PROSE由坚固的透气镜片制成,镜片因人而异,可为眼球表面细胞提供高湿度、富氧量的营养成分[48]。
中枢神经系统电刺激疗法基于电压门控神经脉冲的原理,阻断疼痛刺激信号自下而上的传导[57]。使用经皮放置单向电极片于角膜,对传入性大直径神经纤维进行电脉冲干扰,从而靶向三叉神经颈椎复合体,干扰脊髓颈椎水平三叉神经系统的角膜伤害性信号传入神经与颈椎的C1/C 2水平区域中的二级神经元活动,直接抑制小直径神经纤维性感受器末端放电。但该操作难度大,且随着放置引线的迁移而导致治疗效果不确定。此外,经颅骨磁性刺激(trans cranial magnetic stimulation,TcMS)[58]及以心血管有氧运动、饮食调整、冥想和中医按摩、针灸疗法为代表的综合治疗也显示出良好的效果[59]。
1. 郴州市科技局基金(ZDYF-20200092);郴州市第一人民医院优秀青年基金(N2019-006);南华大学医院管理基金
(2019YJGL04)。 This work was supported by Chenzhou Science and Technology Bureau (ZDYF-20200092), Outstanding Youth Foundation of Chenzhou First
People’s Hospital (N2019-006), and University of South China Hospital Management Fund (2019YJGL04), China.
参考文献
1. Dermer H, Hwang J, Mittal R, et al. Corneal sub-basal nerve plexus
microneuromas in individuals with and without dry eye[ J]. Br J
Ophthalmol, 2021, Epub ahead of print.
2. Belmonte C. Eye dryness sensations after refractive surgery: impaired
tear secretion or “phantom” cornea?[ J]. J Refract Surg, 2007, 23(6):
598-602.
3. Kim J, Yoon HJ, You IC, et al. Clinical characteristics of dry eye with
ocular neuropathic pain features: comparison according to the types
of sensitization based on the Ocular Pain Assessment Survey[ J]. BMC
Ophthalmol, 2020, 20(1): 455.
4. Tagawa Y, Noda K, Ohguchi T, et al. Corneal hyperalgesia in patients
with short tear film break-up time dry eye[ J]. Ocul Surf, 2019, 17(1):
55-59.
5. Crane AM, Levitt RC, Felix ER , et al. Patients with more severe
symptoms of neuropathic ocular pain report more frequent and severe
chronic overlapping pain conditions and psychiatric disease[ J]. Br J
Ophthalmol, 2017, 101(2): 227-231.
6. Galor A, Covington D, Levitt AE, et al. Neuropathic ocular pain
due to dry eye is associated with multiple comorbid chronic pain
syndromes[ J]. J Pain, 2016, 17(3): 310-318.
7. Rosenthal P, Borsook D, Moulton EA. Oculofacial pain: corneal nerve
damage leading to pain beyond the eye[ J]. Invest Ophthalmol Vis Sci,
2016, 57(13): 5285-5287.
9. Kalangara JP, Galor A, Levitt RC, et al. Burning eye syndrome: do
neuropathic pain mechanisms underlie chronic dry eye?[ J]. Pain Med,
2016, 17(4): 746-755.
10. Goyal S, Hamrah P. Understanding neuropathic corneal pain--gaps and
current therapeutic approaches[ J]. Semin Ophthalmol, 2016, 31(1/2):
59-70.
11. Galor A, Moein HR, Lee C, et al. Neuropathic pain and dry eye[ J].
Ocul Surf, 2018, 16(1): 31-44.
12. Aggarwal S, Colon C, Kheirkhah A, et al. Efficacy of autologous serum
tears for treatment of neuropathic corneal pain[ J]. Ocul Surf, 2019,
17(3): 532-539.
13. Theophanous C, Jacobs DS, Hamrah P. Corneal neuralgia after
LASIK[ J]. Optom Vis Sci, 2015, 92(9): e233-e240.
14. Tsubota K, Pflugfelder SC, Liu Z, et al. Defining dry eye from a clinical
perspective[ J]. Int J Mol Sci, 2020, 21(23): 9271.
15. Pi?a R, Ugarte G, Campos M, et al. Role of TRPM8 channels in altered
cold sensitivity of corneal primary sensory neurons induced by axonal
damage[ J]. J Neurosci, 2019, 39(41): 8177-8192.
16. Parra A, Gonzalez-Gonzalez O, Gallar J, et al. Tear fluid hyperosmolality
increases nerve impulse activity of cold thermoreceptor endings of the
cornea[ J]. Pain, 2014, 155(8): 1481-1491.
17. Fakih D, Baudouin C, Réaux-Le Goazigo A, et al. TRPM8: a therapeutic
target for neuroinflammatory symptoms induced by severe dry eye
disease[ J]. Int J Mol Sci, 2020, 21(22): 8756.
18. Horwitz V, Dachir S, Cohen M, et al. Differential expression of corneal
and limbal cytokines and chemokines throughout the clinical course of
sulfur mustard induced ocular injury in the rabbit model[ J]. Exp Eye
Res, 2018, 177: 145-152.
19. Lafreniere JD, Kelly MEM. Potential for endocannabinoid system
modulation in ocular pain and inflammation: filling the gaps in
current pharmacological options[ J]. Neuronal Signal, 2018, 2(4):
NS20170144.
20. Luna C, Mizerska K, Quirce S, et al. Sodium channel blockers modulate
abnormal activity of regenerating nociceptive corneal nerves after
surgical lesion[ J]. Invest Ophthalmol Vis Sci, 2021, 62(1): 2.
21. Cruzat A, Qazi Y, Hamrah P. In vivo confocal microscopy of corneal
nerves in health and disease[ J]. Ocul Surf, 2017, 15(1): 15-47.
22. Hirata H, Mizerska K, Dallacasagrande V, et al. Acute corneal epithelial
debridement unmasks the corneal stromal nerve responses to ocular
stimulation in rats: implications for abnormal sensations of the eye[ J].
J Neurophysiol, 2017, 117(5): 1935-1947.
23. Belmonte C. Pain, dryness, and itch sensations in eye surface disorders
are defined by a balance between inflammation and sensory nerve
injury[ J]. Cornea, 2019, 38(Suppl 1): S11-S24.
24. Belmonte C, Acosta MC, Merayo-Lloves J, et al. What causes eye
pain?[ J] Curr Ophthalmol Rep, 2015, 3(2): 111-121.
25. Aicher SA , Hermes SM, Hegarty DM, et al. Corneal afferents
differentially target thalamic-and parabrachial-projecting neurons in
spinal trigeminal nucleus caudalis[ J]. Neuroscience, 2013, 232: 182-193.
26. Levitt AE, Galor A, Chowdhury AR, et al. Evidence that dry eye
represents a chronic overlapping pain condition[ J]. Mol Pain, 2017, 13:
1744806917729306.
27. Suo J, Wang M, Zhang P, et al. Siwei Jianbu decoction improves
painful paclitaxel-induced peripheral neuropathy in mouse model by
modulating the NF-κB and MAPK signaling pathways[ J]. Regen Med
Res, 2020; 8: 2.
28. Baum P, Koj S, Kl?ting N, et al. Treatment-induced neuropathy in
diabetes (TIND)-developing a disease model in type 1 diabetic rats[ J].
Int J Mol Sci, 2021, 22(4): 1571.
29. Woolf CJ. Evidence for a central component of post-injury pain
hypersensitivity[ J]. Nature, 1983, 306(5944): 686-688.
30. Stapleton F, Marfurt C, Golebiowski B, et al. TFOS International
Workshop on Contact Lens Discomfort. The TFOS International
Workshop on Contact Lens Discomfort: report of the subcommittee on
neurobiology[ J]. Invest Ophthalmol Vis Sci, 2013, 54(11): TFOS71-97.
31. Varshney V, Osborn J, Chatur vedi R , et al. Advances in the
interventional management of neuropathic pain[ J]. Ann Transl Med,
2021, 9(2): 187.
32. Navid MS, Lelic D, Niazi IK, et al. The effects of chiropractic spinal
manipulation on central processing of tonic pain - a pilot study using
standardized low-resolution brain electromagnetic tomography
(sLORETA)[ J]. Sci Rep, 2019, 9(1): 6925.
33. Galor A, Zlotcavitch L, Walter SD, et al. Dry eye symptom severity and
persistence are associated with symptoms of neuropathic pain[ J]. Br J
Ophthalmol, 2015, 99(5): 665-668.
34. Borsook D, Rosenthal P. Chronic (neuropathic) corneal pain and
blepharospasm: five case reports[ J]. Pain, 2011, 152(10): 2427-2431.
35. Hamrah P, Qazi Y, Shahatit B, et al. Corneal nerve and epithelial cell
alterations in corneal allodynia: an in vivo confocal microscopy case
series[ J]. Ocul Surf, 2017, 15(1): 139-151
36. Guerrero-Moreno A, Baudouin C, Melik Parsadaniantz S, et al.
Morphological and functional changes of corneal nerves and their
contribution to peripheral and central sensory abnormalities[ J]. Front
Cell Neurosci, 2020, 14: 610342.
37. Tepelus TC, Chiu GB, Huang J, et al. Correlation between corneal
innervation and inflammation evaluated with confocal microscopy and
symptomatology in patients with dry eye syndromes: a preliminary
study[ J]. Graefes Arch Clin Exp Ophthalmol, 2017, 255(9): 1771-1778.
38. Dua HS, Said DG, Messmer EM, et al. Neurotrophic keratopathy[ J].
Prog Retin Eye Res, 2018, 66: 107-131.
39. Qazi Y, Hurwitz S, Khan S, et al. Validity and reliability of a novel ocular
pain assessment survey (OPAS) in quantifying and monitoring corneal
and ocular surface pain[ J]. Ophthalmology, 2016, 123(7): 1458-1468.
40. Galor A, Batawi H, Felix ER, et al. Incomplete response to artificial
tears is associated with features of neuropathic ocular pain[ J]. Br J
Ophthalmol, 2016, 100(6): 745-749.
41. Wei Y, Gadaria-Rathod N, Epstein S, et al. Tear cytokine profile as a
noninvasive biomarker of inflammation for ocular surface diseases:
standard operating procedures[ J]. Invest Ophthalmol Vis Sci, 2013,54(13): 8327-8336.
42. Moulton EA, Becerra L, Rosenthal P, et al. An approach to localizing
corneal pain representation in human primary somatosensory
cortex[ J]. PLoS One, 2012, 7(9): e44643.
43. Adami G, Gerratana E, Atzeni F, et al. Is central sensitization an
important determinant of functional disability in patients with chronic
inflammatory arthritides?[ J]. Ther Adv Musculoskelet Dis, 2021, 13:
1759720X21993252.
44. Gudasheva TA, Ostrovskaya RU, Seredenin SB. Novel technologies for
dipeptide drugs design and their implantation[ J]. Curr Pharm Des,
2018, 24(26): 3020-3027.
45. Bumgarner JR, Walker WH, Liu JA, et al. Dim light at night exposure
induces cold hyperalgesia and mechanical allodynia in male mice[ J].
Neuroscience, 2020, 434: 111-119.
46. Versura P, Giannaccare G, Pellegrini M, et al. Neurotrophic keratitis:
current challenges and future prospects[ J]. Eye Brain, 2018, 10: 37-45.
47. Pan Q, Angelina A, Zambrano A, et al. Autologous serum eye drops for
dry eye[ J]. Cochrane Database Syst Rev, 2013, 8(8): CD009327.
48. Mian SZ, Agranat JS, Jacobs DS. Prosthetic replacement of the
ocular surface ecosystem (PROSE) treatment for complications after
LASIK[ J]. Eye Contact Lens, 2016, 42(6): 371-373.
49. Morkin MI, Hamrah P. Efficacy of self-retained cryopreserved amniotic
membrane for treatment of neuropathic corneal pain[ J]. Ocul Surf,
2018, 16(1): 132-138.
50. Ceci FM, Ferraguti G, Petrella C, et al. Nerve growth factor in alcohol
use disorders[ J]. Curr Neuropharmacol, 2021, 19(1): 45-60.
51. Barabino S, Chen Y, Chauhan S, et al. Ocular surface immunity:
homeostatic mechanisms and their disruption in dry eye disease[ J].
Prog Retin Eye Res, 2012, 31(3): 271-285.
52. Macri A, Scanarotti C, Bassi A, et al. Evaluation of oxidative stress levels
in the conjunctival epithelium of patients with or without dry eye, and
dry eye patients treated with preservative-free hyaluronic acid 0.15%
and vitamin B12 eye drops[ J]. Graefes Arch Clin Exp Ophthalmol,
2015, 253(3): 425-430.
53. Takemura Y, Imai S, Kojima H, et al. Brain-derived neurotrophic
factor from bone marrow-derived cells promotes post-injury repair of
peripheral nerve[ J]. PLoS One, 2012, 7(9): e44592.
54. Chen M, Peyrin-Biroulet L, George A, et al. Methyl deficient diet
aggravates experimental colitis in rats[ J]. J Cell Mol Med, 2011,
15(11): 2486-2497.
55. Didangelos T, Karlafti E, Kotzakioulafi E, et al. Vitamin B12
supplementation in diabetic neuropathy: a 1-year, randomized, doubleblind, placebo-controlled trial[ J]. Nutrients, 2021, 13(2): 395.
56. Jirsova K, Seidler Stangova P, Palos M, et al. Aberrant HLA-DR
expression in the conjunctival epithelium after autologous serum
treatment in patients with graft-versus-host disease or Sj?gren's
syndrome[ J]. PLoS One, 2020, 15(4): e0231473.
57. Cai MM, Zhang J. Effectiveness of transcutaneous electrical stimulation
combined with artificial tears for the treatment of dry eye: A
randomized controlled trial[ J]. Exp Ther Med, 2020, 20(6): 175.
58. Dieckmann G, Goyal S, Hamrah P. Neuropathic corneal pain:
approaches for management[ J]. Ophthalmology, 2017, 124(11S):
S34-S47.
59. Ebrahimiadib N, Yousefshahi F, Abdi P, et al. Ocular neuropathic pain:
an overview focusing on ocular surface pains[ J]. Clin Ophthalmol,
2020, 14: 2843-2854.