目的:探讨正常眼压性青光眼(normal tension glaucoma,NTG)患者睡眠体位与其双眼不对称损害的关系。方法:纳入2014年1月至2018年9月在温州青光眼进展研究(Wenzhou Glaucoma Progression Study,WGPS)项目中的NTG患者。眼部主要检查有视野和光学相干断层扫描(optical coherence tomography,OCT)。睡眠体位数据通过基线睡眠体位问卷获得。根据侧卧位睡眠偏好,将NTG患者眼部参数分为卧位高侧眼和卧位低侧眼进行讨论;根据双眼不对称损害,将患者眼部参数分为较好眼和较差眼讨论。双眼不对称损害定义为双眼视野平均偏差(mean deviation,MD)差值>6 dB或杯盘比差值>0.2。结果:共纳入158例NTG患者,最长随访时间为48个月,其中122例(77.22%)患者存在睡眠偏好;存在睡眠偏好的患者中,83例(68.03%)患者存在侧卧位偏好;存在侧卧位偏好的患者中,大多数患者偏好右侧卧位[右vs左:59 (71.1%) vs 24 (28.9%),P<0.001]。对存在侧卧位偏好的患者进行分析,发现卧位高侧眼与卧位低侧眼眼部参数之间,差异无统计学意义(P>0.05);卧位低侧眼的视野进展速率[视野指数(visual field index,VFI)、MD]慢于卧位高侧眼(0.48%±1.66%/年 vs ?0.45%±3.07%/年;0.54±0.96 dB/年 vs 0.2±1.15 dB/年),差异无统计学意义(P=0.086,P=0.308)。对同时存在侧卧位偏好及双眼不对称损害的患者进行分析,发现卧位高侧眼与卧位低侧眼的眼部参数之间,差异无统计学意义(P>0.05);卧位低侧较好眼的个数及占比高于卧位低侧较坏眼[23 (57.5%) vs 17(42.5%)],但差异无统计学意义(P=0.132);卧位低侧眼的视野进展速率(VFI、MD)也慢于卧位高侧眼(1.19%±1.65%/年 vs ?0.86%±3.65%/年;0.71±1.13 dB/年 vs0.13 dB/年),但差异无统计学意义(P=0.064,P=0.419)。结论:存在睡眠体位偏好的NTG患者中,约68%存在侧卧位偏好;存在侧卧位偏好的患者中,约70%偏好右侧卧位。但本研究并未发现睡眠体位与青光眼患者双眼不对称损害及其疾病进展存在相关性。
将存在侧卧位偏好的NTG患者分为卧位高侧眼组和卧位低侧眼组,比较其眼部参数,结果示等效球镜、眼轴长度、中央角膜厚度(central corneal thickness,CCT)、LogMAR视力两组间差异无统计学意义(P >0.05)。卧位低侧眼的眼压(intraocular pressure,IOP)高于卧位高侧眼的眼压(14.52±2.51 mmHg vs 14.46±2.54 mmHg),差异无统计学意义( P > 0.05)。卧位低侧眼的神经纤维层厚度(retinal nerve fiber layer thickness,RNFLT)、视野平均偏差(mean deviation,MD)、视野指数(visual field index,VFI)均高于卧位高侧眼(77.65±13.47 μm vs 76.67±13.25 μm;-5.84±5.61 dB vs -6.09±5.35 dB;85.98%±16.9% vs 85.27%±15.47%),差异均无统计学意义(P>0.05,表2)。
表2 卧位高侧眼与卧位低侧眼的眼部参数比较(n=83)
Table 2 Comparison of ocular parameters between the dependent eyes and the non-dependent eyes in recumbent position (n=83)
Table 3 Comparison of the rate of visual field progression between the dependent eyes and the non-dependent eyes in patients who have regularly followed-up
2.4 同时存在侧卧位偏好及双眼不对称损害的患者,卧位高侧眼与卧位低侧眼的眼部参数比较
在存在侧卧位偏好的患者中,40例存在双眼不对称损害,比较同时存在侧卧位偏好及双眼不对称损害患者卧位高侧眼与卧位低侧眼的眼部参数,结果示:等效球镜、眼轴长度、CCT、LogMAR视力两组间差异无统计学意义(P >0.05)。卧位低侧眼的IOP高于卧位高侧眼的眼压(14.36±2.50 mmHg vs 14.32±2.58 mmHg)、RNFLT、MD及VFI低于卧位高侧眼(76.1±15.53 μm vs 76.33±15.57 μm;-7.19±6.19 dB vs ?6.93±5.88 dB;82.67%±18.90% vs 82.98%±17.30%),差异均无统计学意义(P>0.05,表4)。
表4 同时存在侧卧位偏好及双眼不对称损害的患者,卧位高侧眼与卧位低侧眼的眼部参数比较(n=40)
Table 4 Comparison of ocular parameters between the dependent eyes and the non-dependent eyes in patients with both lateral preference and asymmetric damage (n=40)
1. 浙江省卫生高层次创新人才计划 (2016025);温州医科大学附属眼视光医院院内创新课题 (YNCX201308)。 This
work was supported by Zhejiang Provincial Health Innovation Talents Project (2016025) and the Innovation Research Project of the Eye Hospital of Wenzhou
Medical University (YNCX201308), China.
参考文献
1. Basner M, Fomberstein KM, Razavi FM, et al. American time use
survey: sleep time and its relationship to waking activities[ J]. Sleep,
2007, 30(9): 1085-1095.
2. Lee CH, Kim DK, Kim SY, et al. Changes in site of obstruction in
obstructive sleep apnea patients according to sleep position: A DISE
study[ J]. Laryngoscope, 2015, 125(1): 248-254.
3. Jain MR, Marmion VJ. Rapid pneumatic and Mackey-Marg applanation
tonometry to evaluate the postural effect on intraocular pressure[ J]. Br
J Ophthalmol, 1976, 60(10): 687-693.
4. Kiuchi T, Motoyama Y, Oshika T. Relationship of progression of
visual field damage to postural changes in intraocular pressure in
patients with normal-tension glaucoma[ J]. Ophthalmology, 2006,
113(12): 2150-2155.
5. Lee JY, Yoo C, Jung JH, et al. The effect of lateral decubitus position on intraocular pressure in healthy young subjects[ J]. Acta Ophthalmol,
2012, 90(1): e68-72.
6. Lee TE, Yoo C, Kim YY. Effects of different sleeping postures on
intraocular pressure and ocular perfusion pressure in healthy young
subjects[ J]. Ophthalmology, 2013, 120(8): 1565-1570.
7. Malihi M, Sit AJ. Effect of head and body position on intraocular
pressure[ J]. Ophthalmology, 2012, 119(5): 987-991.
8. Kim KN, Jeoung JW, Park KH, et al. Effect of lateral decubitus position
on intraocular pressure in glaucoma patients with asymmetric visual
field loss[ J]. Ophthalmology, 2013, 120(4): 731-735.
9. Kim KN, Jeoung JW, Park KH, et al. Relationship between preferred
sleeping position and asymmetric visual field loss in open-angle
glaucoma patients[ J]. Am J Ophthalmol, 2014, 157(3): 739-745.
10. Tang J, Li N, Deng YP, et al. Effect of body position on the pathogenesis
of asymmetric primary open angle glaucoma[ J]. Int J Ophthalmol,
2018, 11(1): 94-100.
11. Kaplowitz K, Blizzard S, Blizzard DJ, et al. Time spent in lateral sleep
position and asymmetry in glaucoma[ J]. Invest Ophthalmol Vis Sci,
2015, 56(6): 3869-3874.
12. Liang YB, Jiang JH, Ou W, et al. Effect of community screening on
the demographic makeup and clinical severity of glaucoma patients
receiving care in urban China[ J]. Am J Ophthalmol, 2018, 195: 1-7.
13. Pan XF, Xu K, Wang X, et al. Evening exercise is associated with lower
odds of visual field progression in Chinese patients with primary open
angle glaucoma[ J]. Eye Vis (Lond), 2020, 7: 12.
14. Lin SG, Cheng HH, Zhang SD, et al. Parapapillar y choroidal
microvasculature dropout is associated with the decrease in retinal
nerve fiber layer thickness: a prospective study[ J]. Invest Ophthalmol
Vis Sci, 2019, 60: 838-842.
15. 周堃, 尚晓, 王晓燕, 等. 温州地区原发性开角型青光眼患者视野
缺损进展的危险因素分析[J]. 中华眼科杂志, 2019, 50(10): 777-784.
ZHOU K, SHANG X, WANG XY, et al. Risk factors for
visual field loss progression in patients with primary open-angle
glaucoma in Wenzhou area[ J]. Chinese Journal of Ophthalmology,
2019, 50(10): 777-784.
16. De Leon JM, Cheung CY, Wong TY, et al. Retinal vascular caliber
between eyes with asymmetric glaucoma[ J]. Graefes Arch Clin Exp
Ophthalmol, 2015, 253(4): 583-589.
17. Bengtsson B, Lindgren A, Heijl A, et al. Perimetric probability maps to
separate change caused by glaucoma from that caused by cataract[ J].
Acta Ophthalmol Scand, 1997, 75(2): 184-188.
18. Katz J. A comparison of the pattern- and total deviation-based
Glaucoma Change Probability programs[ J]. Invest Ophthalmol Vis Sci,
2000, 41(5): 1012-1026.
19. Fujita M, Miyamoto S, Sekiguchi H, et al. Effects of posture on
sympathetic nervous modulation in patients with chronic heart
failure[ J]. Lancet, 2000, 356(9244): 1822-1823.
20. Miyamoto S, Fujita M, Sekiguchi H, et al. Effects of posture on cardiac
autonomic nervous activity in patients with congestive heart failure[ J].
J Am Coll Cardiol, 2001, 37(7): 1788-1793.
21. Liu JHK, Sit AJ, Weinreb RN. Variation of 24-hour intraocular pressure
in healthy individuals: right eye versus left eye[ J]. Ophthalmology,
2005, 112(10): 1670-1675.
22. Sultan M, Blondeau P. Episcleral venous pressure in younger and older
subjects in the sitting and supine positions[ J]. J Glaucoma, 2003,
12(4): 370-373.
23. Krieglstein GK, Waller WK, Leydhecker W. The vascular basis of the
positional influence on the intraocular pressure[ J]. Albrecht Von
Graefes Arch Klin Exp Ophthalmol, 1978, 206(2): 99-106.
24. Longo A, Geiser MH, Riva CE. Posture changes and subfoveal
choroidal blood flow[ J]. Invest Ophthalmol Vis Sci, 2004, 45(2): 546.
25. Hara T, Hara T, Tsuru T. Increase of peak intraocular pressure during
sleep in reproduced diurnal changes by posture[ J]. Arch Ophthalmol,
2006, 124(2): 165-168.
26. Kiuchi T, Motoyama Y, Oshika T. Postural response of intraocular
pressure and visual field damage in patients with untreated normaltension glaucoma[ J]. J Glaucoma, 2010, 19(3): 191-193.
27. Lee TE, Yoo C, Lin SC, et al. Effect of different head positions in lateral
decubitus posture on Intraocular pressure in treated patients with openangle glaucoma[ J]. Am J Ophthalmol, 2015, 160(5): 929-936.e4.
28. Seo H, Yoo C, Lee TE, et al. Head position and intraocular pressure in
the lateral decubitus position[ J]. Optom Vis Sci, 2015, 92(1): 95-101.
29. Yoo C. Lateral sleep position and asymmetry in glaucoma[ J]. Invest
Ophthalmol Vis Sci, 2016, 57(6): 2543-2544.
30. Ramli N, Nurull BS, Hairi NN, et al. Low nocturnal ocular perfusion
pressure as a risk factor for normal tension glaucoma[ J]. Prev Med,
2013, 57: S47-S49.