返回

眼表的微环境及其调节机制

阅读量:2315
DOI:10.12419/24101501
发布日期:2025-06-23
作者:
王静慧 # ,唐严 # ,张咏鑫 ,叶琳
展开更多

关键词

眼表微环境
神经调节
淋巴调节
免疫调节

摘要

眼表是一个复杂且精细的系统,包括角膜、泪膜和结膜等多个结构。作为眼部直接与外界接触的部分,眼表不仅负责起着保护眼睛的作用,还在视觉功能中扮演着至关重要的角色。眼表微环境(ocular surface microenvironment,OSM)的平衡对眼睛的健康至关重要,任何微环境的失衡都可能引发多种眼表疾病,如干眼症、角膜炎等。随着现代人群生活方式的改变,视屏终端综合征(Visual Display Terminal,VDT)发生率急剧上升,破坏了OSM的平衡,导致眼表疾病的发病率大大升高,特别是干眼症的发病率显著增加,严重影响了患者的生活质量,因此,深入研究维持OSM稳态的调节机制以及探索有效的治疗策略显得尤为紧迫。近年来,研究突破了传统的解剖学框架,揭示了OSM的多系统协同调控机制,为维持眼表微环境稳态提供了新的思路。神经、淋巴、免疫系统之间相互调节,不仅有助于深入挖掘眼表疾病的关键分子和信号通路,还为发现新的生物标志物以及潜在治疗靶点提供了新的方向。因此,本文章系统综述了近年来OSM调节机制的最新进展,重点讨论神经、淋巴和免疫调节在维持OSM稳态中的作用,并分析三者之间的相互影响,以期为眼表疾病的预防及诊疗提供新的思路。

全文

文章亮点

1.关键发现

    · 本综述系统性地提出了“眼表微环境(ocular surface microenvironment,OSM)”概念,将神经、淋巴和免疫系统的动态协同作用整合到一个完整的模型中,揭示了三者如何共同维持眼表微环境的稳定,为深入理解眼表微环境的稳态提供了新思路。

2. 已知与发现

    · 梳理了各个调节机制在眼表微环境中的作用,深入分析神经、淋巴、免疫调节的研究现状,进一步揭示了维持眼表微环境稳态的多元因素。

3. 意义与改变

    · 通过系统性的总结眼表微环境(ocular surface microenvironment,OSM)调控机制的研究进展,为传统眼表疾病的诊疗提供了新思路,即从单一靶点转向多系统协同调控,为未来眼表疾病的精准医疗提供了理论依据,对于维持眼表微环境的稳态的治疗方案具有重要的指导意义。

1 前言

        自20世纪90年代以来,眼表稳态机制研究经历了两次重要范式革新。1998 年,美国 Stern等人提出泪液功能单位(lacrimal functional unit, LFU)概念,即由泪液分泌腺体和细胞(主泪腺和副泪腺、睑板腺、结膜杯状细胞)、眼表上皮、眼睑、泪液引流系统、腺体和黏膜的免疫系统以及相互连接的神经支配共同构成的完整结构[1]。该理念突破传统解剖学局限,为阐释干眼发病机制及其治疗提供了系统性框架。随着研究深入,我国学者于2017年提出眼表微环境(ocular surface microenvironment, OSM)这一概念:OSM由不同眼表组织及其细胞、细胞外基质等多个层面的复杂成分构成,包括眼睑、角膜、结膜、睑板腺、泪腺等组织,以及泪膜、免疫体系、神经支配体系、内分泌调控体系、血管及淋巴管体系、微生物群落等。这些成分相互联系和影响,共同维持稳定健康的眼表状态[2]
        值得关注的是,作为OSM的核心调控对象,泪膜稳态直接决定视觉质量。泪膜的稳定性受到多种因素的影响,包括泪液的质和量、眼表的动力学以及微生物群落的平衡等。因此本文主要从维持泪膜稳定性的影响因素出发,对维持OSM的调节机制进行系统解析,为理解眼表疾病病理过程提供新思路。

2 维持眼表微环境的调节机制

2.1 神经调节

        眼表的神经调节通过自主神经系统(交感神经和副交感神经[3])和三叉神经系统协同实现。前者主导稳态维持,后者负责应激响应,二者通过调控泪腺、角膜、结膜等组织的正常生理活动,共同维系眼表湿润环境。
2.1.1 泪腺
        泪腺在OSM中发挥着重要作用。自主神经系统通过双重支配实现泪液的动态平衡[4]。交感神经维持基础泪液分泌,而副交感神经主导应激性大量分泌。但在解剖学和功能上,副交感神经系统占主导地位。其调控路径始于脑桥上泌涎核,经翼管神经传导至蝶腭神经节,最终支配靶器官[5-6]。临床上通过刺激筛前神经激活鼻泪反射的治疗方案,正是基于此通路开发,但其疗效受神经可塑性及心理调节因素制约。
        此外,LFU同时也接受来自三叉神经眼支的感觉神经支配,这种双重神经支配构成神经-腺体调控网络。这些神经通过在泪腺分泌细胞及排泄管外分支形成的神经网络,供应腺体并穿过腺体,进一步延伸至外侧结膜和眼睑皮肤。泪液分泌减少、高渗透压和炎症反应可能引起周围神经损伤及躯体感觉异常[7]。这种异常的躯体感觉反过来会减少对泪液功能单位的刺激,进而导致干眼症(dry eye disease, DED)的发生。
2.1.2 角膜
        角膜神经密度居人体组织之首[8]。完整的角膜神经支配对于正常的眨眼和流泪反射是必不可少的。在正常生理条件下,角膜中的感觉神经将传入刺激信号传递到脑干,并通过一系列中间神经元传递,最终将传出信号通过副交感神经和交感神经传递到泪腺,进而驱动泪液产生和分泌。来自角膜和结膜神经的低水平感觉信息传入到大脑的泪核,反过来又刺激面神经的传出交感神经和副交感神经纤维,这些纤维支配泪腺并促使泪液分泌,形成泪膜并覆盖眼表面[9]
        此外,角膜上的神经纤维大部分是感觉神经纤维,主要起源于三叉神经的眼支及无髓鞘神经末梢。终止于角膜上皮的神经末梢。刺激角膜感觉神经通过三叉神经-副交感神经反射作用,激活泪腺分泌泪液,从而形成泪膜,维持眼表的湿润环境[10]
        但当传入神经受到更加强烈的刺激(异物产生的机械性伤害等),或者来自其他因素产生输入时,泪腺会分泌大量泪液,以冲刷有害物质[11]。因此,角膜表面上皮的感觉神经末梢能够通过改变泪液产生量来快速响应各种环境变化。当角膜受到过强的外部刺激时,刺激超出了神经系统的承受上限,神经传导通路可能崩溃,导致泪液分泌反射性抑制,微环境失衡,从而引起干眼症的发生[9]。这些神经损伤会导致眼表和泪腺之间的神经反馈回路中断,从而导致干眼症(DED)和神经营养性角膜病等角膜疾病。相反,神经纤维的过敏或疼痛控制神经中枢的失调可能导致神经性疼痛的产生[12]
2.1.3 结膜
        结膜通过特异性受体网络实现神经调控。其杯状细胞受自主神经的支配,且表面存在毒蕈碱样受体和肾上腺素能受体[13],构成自主神经系统的微观作用靶点。结膜同样也受三叉神经眼支支配。结膜上的传入神经主要由无髓鞘C纤维组成,包括专门的、机械不敏感的化学伤害感受器、神经纤维和多模式伤害感受器。这些神经纤维不仅负责传递皮肤中的组胺能瘙痒信号,也可能在眼部发挥类似作用,从而引发过敏性结膜炎[14]
        当神经功能发生障碍,眼表各部位(如角膜、结膜、泪腺等)受到的影响会导致不同程度的功能损害。当神经传导通路发生障碍时,会减少作用于感受器(泪腺、角膜、结膜)的传入神经刺激,导致泪液分泌减少,泪膜的稳定性下降,从而破坏OSM的平衡。这种失衡可能引发干眼症相关的不适或刺激症状,甚至在更严重的情况下,导致角膜炎和神经性角膜疼痛[12]等症状。

2.2 淋巴调节

        人体黏膜相关淋巴组织(mucosa-associated lymphoid tissue, MALT)构成免疫防御的前哨系统,其通过淋巴细胞的定向迁移实现多器官免疫协同[15]。当抗原入侵时,MALT不仅能在滤泡性淋巴组织中激活特异性淋巴细胞,还能引导效应细胞定植于靶器官的弥漫性淋巴组织,这种"激活-归巢"机制在清除病原体的同时,通过免疫耐受避免对无害抗原的过度反应[16]。除了识别和防御抗原外,MALT还承担着促进免疫耐受性的作用,以避免因非致病性抗原引发持续的不必要炎症。
        与全身淋巴系统相比,眼表淋巴网络呈现显著的功能特化。眼表面脉管系统主要分布于结膜、巩膜外层、泪腺及角膜缘区域中[17]。正常角膜为维持光学透明性保持无血管状态,其营养供应依赖角膜缘血管网及房水渗透。结膜区域则分布着由血管内皮生长因子(Vascular Endothelial Growth Factor, VEGF)调控的密集血管-淋巴管系统,这一特殊结构既保障免疫细胞运输与供氧,又通过限制非必要血管生成维持OSM稳态[18]。与其他器官类似,眼表需要不间断的血液供应来介导生长因子的运输、免疫反应和氧气供应。值得注意的是,泪腺作为MALT的重要组成部分,其淋巴样细胞的功能活性呈现年龄相关性衰减:新生儿期建立的淋巴细胞黏附网络随衰老逐渐退化,这种免疫衰老现象与DED发病率上升呈正相关[19-20]
        另有研究表明,淋巴细胞向泪腺迁移具有随机性。已有研究明确了诸如CD 11b+、CD 45+、Th-17(T helper 17 cells, 辅助性T细胞-17)、HIF-1α(hypoxia-inducible factor 1-alpha, 低氧诱导因子1-α)等细胞因子在干眼症发病机制中的重要作用[21],这进一步表明淋巴反射在干眼症发生、发展中起着关键作用。
        在正常情况下,角膜无血管和淋巴管,这有助于其光学功能的保持及免疫静止。但是角膜无血管状态的双重性在病理条件下尤为凸显。当感染或移植引发炎症时,新生血管与淋巴管的异常生成将打破免疫赦免状态——新生血管不仅为炎性细胞浸润提供通道,更通过VEGF等因子促进局部淋巴管增生。这些新生淋巴管使活化的骨髓细胞得以进入区域淋巴结,进而激活适应性免疫应答,最终导致移植排斥[12]。因此,针对角膜移植的患者,术后抗感染对于移植角膜的健康状态至关重要。

2.3 免疫调节

        作为机体抵御外界侵害的核心屏障,OSM的免疫机制具有显著特殊性。与全身免疫系统依赖异质性免疫细胞不同,OSM通过先天性与适应性免疫的精密协作构建防御网络,其稳态失衡可直接引发角膜溃疡、新生血管、结膜炎等病理改变[22]
        眼表免疫系统呈现清晰的层级防御特征。作为第一道防线,先天免疫负责控制初始感染并协调适应性免疫反应。而角膜上皮作为物理屏障构成先天免疫的第一道防线。不仅构成了防御微生物和环境侵害的物理屏障,还在免疫调节中发挥关键作用[23]。眼表的适应性免疫反应依赖于T细胞介导的细胞防御和浆细胞分泌的免疫球蛋白(体液免疫防御)。当屏障功能受损时,适应性免疫随即启动:抗原递呈细胞(antigen-presenting cell, APC)中的专职型(树突状细胞、巨噬细胞、B细胞和一些上皮细胞类型)与非专职型(例如成纤维细胞)协同捕获抗原[24],进而激活T细胞介导的细胞免疫应答。值得注意的是,Th细胞亚群(Th1、Th2、Th17等)通过差异化的细胞因子释放形成免疫调节的“分子开关”——Th1主导抗胞内病原体,Th2调控过敏反应,Th17则强化中性粒细胞募集[25]。在不利环境下,粒细胞会被募集至眼表,并通过破坏角膜和结膜的APC来激活Th效应细胞,炎性因子瀑布式释放,进而放大免疫反应过程并导致眼表上皮损伤。此外,激素对眼表免疫的调节作用也不容忽视[26],性激素尤其显著影响泪腺和睑板腺的分泌功能。其中雄激素通过调控转化生长因子-β(transforming growth factor-β, TGF-β)的合成以及减少白细胞介素-1β(interleukin-1β, 白细胞介素-1β)和转化生长因子-α(transforming growth factor-α, TGF-α),参与泪腺功能的调节[27]
        结膜中的杯状细胞的免疫调节功能凸显了OSM的复杂性。作为结膜特有的黏蛋白分泌细胞,其正常生理功能依赖于泪液中的生长因子和常驻免疫细胞分泌的IL-13,这些因子能促进蛋白质合成和增殖[28]。结膜杯状细胞作为眼表面到基质中单核吞噬细胞的抗原通道[29]。其不仅通过构建物理屏障隔离抗原,更借助分泌TGF-β2、视黄酸(Retinoic Acid, RA)等免疫调节因子抑制过度炎症反应[30]。临床研究证实,杯状细胞功能缺陷会直接导致RA合成减少,引发结膜炎症并加速干眼症进程[31]
        “炎症的恶性循环”已被认为是干眼症发展的核心驱动因素,眼部感觉神经元和局部免疫系统之间的双向相互作用破坏了眼部稳态。当眼表的免疫系统应对炎症时,感觉神经元会产生神经冲动,引发感觉、流泪及眨眼的变化。此外,外周感觉神经元通过释放神经肽和免疫调节因子,激活神经源性炎症并促进免疫反应[32]。近年来的研究进一步揭示了炎症在干眼症发病机制中的关键作用,眼表免疫反应的失调已被认为是干眼症的根本原因之一[22]。诸多细胞因子在干眼症发病过程中扮演了重要角色(表1)。尽管当前已知干眼的核心发病机制是炎症,并且在临床治疗多以抗炎为主,但是抗炎药物的毒性和长时间使用可能会引发药物性角膜炎,仍需引起重视。

表 1 DED 中参与发病机制的免疫因子
Table 1 Immune factors involved in the pathogenesis of dry eye disease (DED)

免疫因子

功能

结果

水通道蛋白5[33]

参与内质网应激介导的炎症

泪腺病理生理变化和功能失代偿

辅助性T细胞17[34]

诱导 IL-17 高表达,激活相关信号通路

打破眼表免疫平衡机制引发炎症反应

分泌磷脂酶A2[35]

介导慢性炎症、促进上皮细胞产生细胞因子

加剧了DED的慢性化

蛋白多糖4[36]

眼表面润滑剂

使sPLA2-a产生炎症反应

色素上皮衍生因子[37]

抑制MAPK p38和JNK信号通路

抗炎作用,并在DED的发病机制中发挥免疫调节作用

可溶性致瘤性抑制因子2[38]

促进肥大细胞活化,加快炎症反应

导致干眼疾病恶化的炎症循环

通道蛋白5:AQP5;内质网:ER;辅助性T细胞17:Th17;分泌型磷脂酶A2:sPLA2-Ⅱa;蛋白多糖4:PRG4;色素上皮衍生因子:PEDF;可溶性致瘤性抑制因子2:sST2;p38丝裂原活化蛋白激酶:MAPK p38;c-Jun氨基末端激酶:JNK。

Aquaporin 5: AQP5; Endoplasmic reticulum: ER; T-helper 17 cells: Th17; Secretory phospholipase A2 group IIA: sPLA2-IIa; Proteoglycan 4: PRG4; Pigment epithelium-derived factor: PEDF; Soluble suppressor of tumorigenicity 2: sST2; p38 mitogen-activated protein kinase: MAPK p38; c-jun n-terminal kinase: JNK.

3 神经-淋巴调节-免疫调节的相互作用

        OSM中的神经、淋巴和免疫调节机制相互协同、相互制约:神经系统通过电信号传递威胁预警;淋巴系统构筑免疫细胞运输通道;免疫系统执行精准防御。三者通过动态平衡实现免疫耐受与病原清除的双重使命。共同维持眼表的稳态。

3.1 神经-免疫调节

        神经系统通过释放神经递质和神经肽,直接或间接地调节眼表的免疫反应。从而增强或抑制免疫应答,帮助维持眼部免疫稳态。神经调节不仅能增强免疫应答,还能防止眼部免疫反应过度激活,减少免疫损伤。然而长期的神经系统激活或应激反应,尤其是在精神压力、创伤或感染情况下,可能引发免疫过度激活,从而导致慢性炎症或自体免疫疾病(如干眼症、角膜炎、过敏性结膜炎等)。
        对于水液缺乏型干眼的患者,眨眼时泪膜变薄所产生的机械应力可能会损伤神经末梢分支并引发持续过度刺激。这种对感觉神经末梢的损伤可能伴随神经纤维、三叉神经元和高阶神经元中持续电化学活动的敏感性增加,进而引发神经性疼痛症状[39]。角膜表面的物理或化学损伤激活损伤细胞和局部浸润的免疫细胞释放前列腺素和白三烯、趋化因子、IL和TNF等信号分子,同时刺激神经生长因子分泌。这些分子引起伤害感受器的持续放电并降低刺激阈值,增强脉冲传递,导致外周敏化,表现为持续刺激、疼痛和异常性疼痛。如果眼表损伤持续,受影响的个体可能会继续发展中枢敏感化。神经损伤,如病毒感染(单纯疱疹、带状疱疹角结膜炎)、化学烧伤等也会导致眼表神经因子供应不足,影响免疫调节。同时三叉神经损伤进一步减弱泪腺反射,导致泪液分泌减少,加剧角膜上皮损伤,进而影响眼部免疫功能。反过来说,慢性干眼症本身也可能会降低角膜敏感性[40]
        眼表的急性或慢性过敏性炎症会导致结膜和角膜神经纤维的重复刺激,释放更多的神经肽,刺激肥大细胞并激活周围神经,形成恶性循环,从而加剧神经源性炎症,进一步加重过敏性结膜炎的症状[14]

3.2 淋巴-免疫调节

        淋巴系统在眼表免疫反应中起着基础性作用。淋巴细胞(如T细胞、B细胞、树突状细胞等)不仅执行免疫应答,还负责维持免疫耐受。T细胞在眼部免疫反应中扮演重要角色,特别是调节性T细胞(regulatory T cells; Treg)通过分泌免疫抑制性细胞因子(如IL-10、TGF-β)抑制免疫反应的过度激活,防止眼部自身免疫反应的发生,保护角膜[41]、结膜等免受过度免疫反应的损伤[42]
        眼部淋巴管系统在免疫细胞的迁移和分布中起着重要作用,通过引导免疫细胞进入眼部组织,确保局部免疫反应的发生。在炎症反应过程中,淋巴细胞能够通过淋巴管系统迅速迁移到感染部位,从而增强免疫清除作用[43]
        然而淋巴系统的异常激活可能引发眼部的慢性炎症。免疫系统可能导致免疫系统攻击自身眼部组织,引发角膜炎、葡萄膜炎等自体免疫病。此外,眼部的淋巴管增生也可促进持续的炎症反应,进一步加重病情。

3.3 神经-淋巴调节

        神经系统和淋巴系统之间的相互作用复杂且动态,这种协同作用通常涉及神经传导物质对淋巴细胞功能的影响,以及淋巴细胞对神经系统的反馈调节。
        神经系统通过迷走神经对免疫反应的调节,影响淋巴细胞在OSM中的分布和活动。神经传导物质(如去甲肾上腺素)可以通过淋巴管系统促进免疫细胞的迁移,增强局部免疫反应。神经-淋巴-免疫轴的调节能够有效地协调免疫细胞的招募、激活与抑制,确保眼部免疫反应的平衡[44]
        然而,神经系统的激活可能通过交感神经引发淋巴细胞的过度活化,导致眼部的局部免疫反应过强,进而引发慢性炎症或免疫相关疾病。淋巴系统功能紊乱可能破坏神经系统的调节功能,进而影响免疫稳态。这种紊乱常见于眼部的自体免疫病(如干眼症、角膜炎)中。

4 结语与展望

        OSM作为一个动态的系统,通过免疫、淋巴、神经调节机制协同作用,维持其稳态。这种稳态对于避免过度炎症、防止组织损伤和视力损害至关重要。尽管目前关于神经调节、淋巴调节和免疫调节的研究较为丰富,然而大部分研究集中在干眼症上,而对角膜和结膜的研究则相对较少,尤其是这些疾病与OSM之间的关系的探索尚不够全面。深入了解OSM及其调节机制,对眼表疾病(如干眼症、角膜炎、结膜炎等)的预防和诊疗具有重要的指导意义。通过挖掘这些关键机制,我们有望发现新的治疗策略,增强免疫调节,从而改善眼表疾病,恢复眼表稳态。期望未来的研究应更加关注微环境的变化及其对眼表健康的影响,为眼表疾病的临床干预提供新的思路和方法。

声明

本稿件在研究和论文撰写中未使用了生成式人工智能(GenAI),所有作者对内容的真实性、完整性和科学性负责。所有科学贡献和智力劳动均由所有作者共同完成。

利益冲突

所有作者均声明不存在利益冲突。

开放获取声明

本文适用于知识共享许可协议(Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。

基金

1. 黑龙江省博士后科研启动金(LBH-Q21031)。

参考文献

1. Stern ME, Beuerman RW, Fox RI, et al. The pathology of dry eye: the interaction between the ocular surface and lacrimal glands[J]. Cornea, 1998, 17(6): 584-589. DOI: 10.1097/00003226-199811000-00002.
2. Zhang X, Vimalin JM, Qu Y, et al. Dry eye management: targeting the ocular surface microenvironment[J]. Int J Mol Sci, 2017, 18(7): 1398. DOI: 10.3390/ijms18071398.
3. Wu F, Zhao Y, Zhang H. Ocular autonomic nervous system: an update from anatomy to physiological functions[J]. Vision (Basel), 2022, 6(1): 6. DOI: 10.3390/vision6010006.
4. Patel DV, McGhee CNJ. Mapping of the normal human corneal sub-Basal nerve plexus by in vivo laser scanning confocal microscopy[J]. Invest Ophthalmol Vis Sci, 2005, 46(12): 4485-4488. DOI: 10.1167/iovs.05-0794.
5.  Friedman NJ, Butron K, Robledo N, et al. A nonrandomized, open-label study to evaluate the effect of nasal stimulation on tear production in subjects with dry eye disease[J]. Clin Ophthalmol, 2016, 10: 795-804. DOI: 10.2147/OPTH.S101716.
6.  LeDoux MS, Zhou Q, Murphy RB, et al. Parasympathetic innervation of the meibomian glands in rats[J]. Invest Ophthalmol Vis Sci, 2001, 42(11): 2434-2441.
7. Guzmán M, Miglio M, Keitelman I, et al. Transient tear hyperosmolarity disrupts the neuroimmune homeostasis of the ocular surface and facilitates dry eye onset[J]. Immunology, 2020, 161(2): 148-161. DOI: 10.1111/imm.13243.
8.  Medeiros CS, Santhiago MR. Corneal nerves anatomy, function, injury and regeneration[J]. Exp Eye Res, 2020, 200: 108243. DOI: 10.1016/j.exer.2020.108243.
9. Ma L, Yang L, Wang X, et al. CGRP released by corneal sensory nerve maintains tear secretion of the lacrimal gland[J]. Invest Ophthalmol Vis Sci, 2024, 65(4): 30. DOI: 10.1167/iovs.65.4.30.
10. Dastjerdi MH, Dana R. Corneal nerve alterations in dry eye-associated ocular surface disease[J]. Int Ophthalmol Clin, 2009, 49(1): 11-20. DOI: 10.1097/IIO.0b013e31819242c9.
11. Labetoulle M, Baudouin C, Calonge M, et al. Role of corneal nerves in ocular surface homeostasis and disease[J]. Acta Ophthalmol, 2019, 97(2): 137-145. DOI: 10.1111/aos.13844.
12. Yang AY, Chow J, Liu J. Corneal innervation and sensation: the eye and beyond[J]. Yale J Biol Med, 2018, 91(1): 13-21.
13. Tuominen ISJ, Konttinen YT, Vesaluoma MH, et al. Corneal innervation and morphology in primary Sjögren’s syndrome[J]. Invest Ophthalmol Vis Sci, 2003, 44(6): 2545-2549. DOI: 10.1167/iovs.02-1260.
14.  Kalangara JP, Vanijcharoenkarn K, Chisolm S, et al. Neuropathic pain and itch: mechanisms in allergic conjunctivitis[J]. Curr Opin Allergy Clin Immunol, 2022, 22(5): 298-303. DOI: 10.1097/ACI.0000000000000843.
15. Paulsen F. Functional anatomy and immunological interactions of ocular surface and adnexa[J]. Dev Ophthalmol, 2008, 41: 21-35. DOI: 10.1159/000131068.
16.  Knop E, Knop N. Eye-associated lymphoid tissue (EALT) is continuously spread throughout the ocular surface from the lacrimal gland to the lacrimal drainage system[J]. Ophthalmologe, 2003, 100(11): 929-942. DOI: 10.1007/s00347-003-0936-6.
17. Yin X, Zhang S, Lee JH, et al. Compartmentalized ocular lymphatic system mediates eye-brain immunity[J]. Nature, 2024, 628(8006): 204-211. DOI: 10.1038/s41586-024-07130-8.
18. Damasceno RWF, Barbosa JAP, Cortez LRC, et al. Orbital lymphatic vessels: immunohistochemical detection in the lacrimal gland, optic nerve, fat tissue, and extrinsic oculomotor muscles[J]. Arq Bras Oftalmol, 2021, 84(3): 209-213. DOI: 10.5935/0004-2749.20210035.
19. O’Sullivan NL, Montgomery PC. Selective interactions of lymphocytes with neonatal and adult lacrimal gland tissues[J]. Invest Ophthalmol Vis Sci, 1990, 31(8): 1615-1622.
20. Paranyuk Y, Claros N, Birzgalis A, et al. Lacrimal gland fluid secretion and lymphocytic infiltration in the NZB/W mouse model of Sjögren’s syndrome[J]. Curr Eye Res, 2001, 23(3): 199-205. DOI: 10.1076/ceyr.23.3.199.5468.
21. Ji YW, Lee JL, Kang HG, et al. Corneal lymphangiogenesis facilitates ocular surface inflammation and cell trafficking in dry eye disease[J]. Ocul Surf, 2018, 16(3): 306-313. DOI: 10.1016/j.jtos.2018.03.008.
22. Wei Y, Asbell PA. The core mechanism of dry eye disease is inflammation[J]. Eye Contact Lens, 2014, 40(4): 248-256. DOI: 10.1097/ICL.0000000000000042.
23. Stepp MA, Tadvalkar G, Hakh R, et al. Corneal epithelial cells function as surrogate Schwann cells for their sensory nerves[J]. Glia, 2017, 65(6): 851-863. DOI: 10.1002/glia.23102.
24. Nair AP, D’Souza S, Khamar P, et al. Ocular surface immune cell diversity in dry eye disease[J]. Indian J Ophthalmol, 2023, 71(4): 1237-1247. DOI: 10.4103/IJO.IJO_2986_22.
25. Nair AP, D’Souza S, Shetty R, et al. Altered ocular surface immune cell profile in patients with dry eye disease[J]. Ocul Surf, 2021, 21: 96-106. DOI: 10.1016/j.jtos.2021.04.002.
26. Benítez-Del-Castillo JM, Carmen Acosta M, Wassfi MA, et al. Relation between corneal innervation with confocal microscopy and corneal sensitivity with noncontact esthesiometry in patients with dry eye[J]. Invest Ophthalmol Vis Sci, 2007, 48(1): 173-181. DOI: 10.1167/iovs.06-0127.
27. Villani E, Galimberti D, Viola F, et al. The cornea in sjogren’s syndrome: an in vivo confocal study[J]. Invest Ophthalmol Vis Sci, 2007, 48(5): 2017-2022. DOI: 10.1167/iovs.06-1129.
28. De Paiva CS, Raince JK, McClellan AJ, et al. Homeostatic control of conjunctival mucosal goblet cells by NKT-derived IL-13[J]. Mucosal Immunol, 2011, 4(4): 397-408. DOI: 10.1038/mi.2010.82.
29. Barbosa FL, Xiao Y, Bian F, et al. Goblet cells contribute to ocular surface immune tolerance-implications for dry eye disease[J]. Int J Mol Sci, 2017, 18(5): 978. DOI: 10.3390/ijms18050978.
30. Xiao Y, de Paiva CS, Yu Z, et al. Goblet cell-produced retinoic acid suppresses CD86 expression and IL-12 production in bone marrow-derived cells[J]. Int Immunol, 2018, 30(10): 457-470. DOI: 10.1093/intimm/dxy045.
31. Alam J, de Paiva CS, Pflugfelder SC. Immune - Goblet cell interaction in the conjunctiva[J]. Ocul Surf, 2020, 18(2): 326-334. DOI: 10.1016/j.jtos.2019.12.006.
32. Periman LM, Perez VL, Saban DR, et al. The immunological basis of dry eye disease and current topical treatment options[J]. J Ocul Pharmacol Ther, 2020, 36(3): 137-146. DOI: 10.1089/jop.2019.0060.
33. Hu S, Di G, Cao X, et al. Lacrimal gland homeostasis is maintained by the AQP5 pathway by attenuating endoplasmic reticulum stress inflammation in the lacrimal gland of AQP5 knockout mice[J]. Mol Vis, 2021, 27: 679-690.
34. 刘意, 余曼. Th17细胞分化调控在干眼治疗中的研究现状[J]. 中国眼耳鼻喉科杂志, 2023, 23(6): 502-506. DOI: 10.14166/j.issn.1671-2420.2023.06.019.
Liu Y, Yu M. Present state of research on the regulation of Th17 cells differentiation in dry eye treatment[J]. Chin J Ophthalmol Otorhinolaryngol, 2023, 23(6): 502-506. DOI: 10.14166/j.issn.1671-2420.2023.06.019.
35. Wei Y, Asbell PA. sPLA2-IIa participates in ocular surface inflammation in humans with dry eye disease[J]. Exp Eye Res, 2020, 201: 108209. DOI: 10.1016/j.exer.2020.108209.
36. Menon NG, Goyal R, Lema C, et al. Proteoglycan 4 (PRG4) expression and function in dry eye associated inflammation[J]. Exp Eye Res, 2021, 208: 108628. DOI: 10.1016/j.exer.2021.108628.
37. Ma B, Zhou Y, Liu R, et al. Pigment epithelium-derived factor (PEDF) plays anti-inflammatory roles in the pathogenesis of dry eye disease[J]. Ocul Surf, 2021, 20: 70-85. DOI: 10.1016/j.jtos.2020.12.007.
38.  Soyfoo MS, Nicaise C. Pathophysiologic role of interleukin-33/ST2 in sjögren’s syndrome[J]. Autoimmun Rev, 2021, 20(3): 102756. DOI: 10.1016/j.autrev.2021.102756.
39. Galor A, Levitt RC, Felix ER, et al. Neuropathic ocular pain: an important yet underevaluated feature of dry eye[J]. Eye (Lond), 2015, 29(3): 301-312. DOI: 10.1038/eye.2014.263.
40. Belmonte C, Carmen Acosta M, Gallar J. Neural basis of sensation in intact and injured corneas[J]. Exp Eye Res, 2004, 78(3): 513-525. DOI: 10.1016/j.exer.2003.09.023.
41. Knop E, Knop N. The role of eye-associated lymphoid tissue in corneal immune protection[J]. J Anat, 2005, 206(3): 271-285. DOI: 10.1111/j.1469-7580.2005.00394.x.
42. Wu X, Ma Y, Zhang Z, et al. New targets of nascent lymphatic vessels in ocular diseases[J]. Front Physiol, 2024, 15: 1374627. DOI: 10.3389/fphys.2024.1374627.
43. Clahsen T, Hadrian K, Notara M, et al. The novel role of lymphatic vessels in the pathogenesis of ocular diseases[J]. Prog Retin Eye Res, 2023, 96: 101157. DOI: 10.1016/j.preteyeres.2022.101157.
44. Tracey KJ. The inflammatory reflex[J]. Nature, 2002, 420(6917): 853-859. DOI: 10.1038/nature01321.

相关文章