目的:探讨光学相干断层扫描血管成像(optical coherence tomography angiography,OCTA)在糖尿病性视网膜病变中的应用。方法:选取2021年中山大学附属第七医院眼科63例糖尿病患者为研究对象,分为无糖尿病性视网膜病变(T0,21眼)、轻度非增殖期(T1,21眼)、中重度非增殖期(T2,14眼)及增殖期(T3,7眼)。收集各组生化指标,包括空腹血糖、糖化血红蛋白、谷丙转氨酶、谷草转氨酶、碱性磷酸酶、血清尿素氮、肌酐、尿素氮肌酐比值,及OCTA数据,即中心视网膜厚度、Angiography3×3及Angiography6×6血管线性密度及血管灌注密度等。采用单因素方差分析比较各组间差异。结果:T2组、T3组与T0组相比,T3组与T1组相比,糖尿病病程延长;T3组与其他各组相比,尿素氮升高;T1组、T2组、T3组与T0组相比,T3组与T1组相比,6 mm ×6 mm外层血流线性密度减少;与T0组相比,T1组、T2组及T3组6 mm ×6 mm完整血流线性密度减少;与T0相比,T2组、T3组6 mm ×6 mm外层血流灌注密度减少;与T0组相比,T3组6 mm ×6 mm完整血流灌注密度减少;T2组、T3组与T0组相比,T3与T1相比,3 mm ×3 mm内层血流线性密度明显减少;T3组与T0组及T1组相比,3 mm ×3 mm完整血流线性密度减少。结论:随着糖尿病性视网膜病变的进展,患者的尿素氮及肌酐逐渐升高,OCTA的血流线性密度及血流灌注密度逐渐减少。与血流灌注密度相比,血流线性密度对于早期糖尿病性视网膜病变筛查可能更为敏感。而利用Angiography6×6模式可能可以更早地发现糖尿病性视网膜病变的视网膜血流变化。
T2组、T3组与T0组相比,T3组与T1组相比,糖尿病病程延长;T3组与其他各组相比,BUN升高;T1组、T2组、T3组与T0组相比,T3组与T1组相比,6 mm ×6 mm外层血流线性密度减少;T1组、T2组及T3组与T0组相比,6 mm ×6 mm完整血流线性密度减少;T2组、T3组与T0组相比,6 mm ×6 mm外层血流灌注密度减少;T3组与T0组相比,6 mm ×6 mm完整血流灌注密度减少;T2组、T3组与T0组相比,T3组与T1组相比,3 mm ×3 mm内层血流线性密度明显减少;T3组与T0组及T1组相比,3 mm ×3 mm完整血流线性密度减少。
图4 DR各期典型OCTA图像
Figure 4 Typical OCTA images of each stage of DR
图4 DR各期典型OCTA图像
Figure 4 Typical OCTA images of each stage of DR
续表1
表2 不同程度DR患者单因素方差分析事后多重比较
Table 2 One-way ANOVA post-hoc multiple comparisons in patients with difffferent degrees of DR
本研究中,随着DR进一步发展,视网膜血流线性密度及血流灌注密度逐渐下降,这与既往多项研究[13-17]结果相似。本研究发现6 mm ×6 mm及3 mm ×3 mm的血流线性密度在早期轻度NPDR时就已明显减少。而血流灌注密度仅在6 mm ×6 mm存在明显差异,且仅在中重度NPDR及PDR时期发生明显改变。这是因为OCTA的血流线性密度是将血管骨骼化,把每根血管线条化描绘,以计算区域内线性长度与区域面积的比值。因此血管线性密度不受血管管径变化的影响,能更敏感地发现血管数量的变化。而血管灌注密度则是计算血管管径在区域内覆盖面积与区域面积的比值。Laotaweerungsawat等[18]的一项前瞻性横断面研究也表明随着DR进展,VD与PD均逐渐降低,但是在区分DR分期方面,VD更胜一筹。Alam等[19]将血管曲率、血管管径、血管周长指数、VD、FAZ面积及FAZ轮廓不规则性6个OCTA定量指标用于DR的客观分类及分期,结果表明VD是敏感性最高的指标。因此,血流线性密度对于早期DR筛查可能更为敏感。
本研究发现6 mm ×6 mm的血流线性密度及血流灌注密度均明显减少,而3 mm ×3 mm仅血流线性密度明显减少,血流灌注密度无明显差异。同时,我们注意到6 mm ×6 mm外层血流线性密度及血流灌注密度明显减少,而内层及中心区域的血流线性密度及血流灌注密度无明显差异;3 mm ×3 mm内层血流线性密度明显减少,而中心血流线性密度无明显差异。这与Yang等[20]的一项横断面研究结果相似,他们将健康人群及临床前期DR患者Angiography3×3及Angiography6×6的OCTA血流密度进行对比,发现研究组所有区域(中心区域除外),浅表视网膜血管层的视网膜血流密度均显著低于对照组。Karst等[21]利用OCTA记录了7个标准化的3 mm ×3 mm区域的血流灌注:一个以中央凹为中心,3个在中央凹颞侧,3个在视盘鼻侧。最终发现与靠近中央凹的毛细血管相比,旁中央凹外的毛细血管对于DR毛细血管灌注变化更敏感。因此,对于早期DR视网膜血流变化,选择更大范围的Angiography6×6模式可能更为敏感。
1、Elnahry AG, Abdel-Kader AA, Habib AE, et al. Review on recent trials
evaluating the effect of intravitreal injections of anti-VEGF agents
on the macular perfusion of diabetic patients with diabetic macular
edema[ J]. Rev Recent Clin Trials, 2020, 15(3): 188-198.
2、Moosavi A, Figueiredo N, Prasanna P, et al. Imaging features of vessels
and leakage patterns predict extended interval aflibercept dosing using
ultra-widefield angiography in retinal vascular disease: findings from
the PERMEATE study[ J]. IEEE Trans Biomed Eng, 2021, 68(6):
1777-1786.
3、Alagorie AR, Nittala MG, Velaga S, et al. Association of intravitreal
aflibercept with optical coherence tomography angiography vessel
density in patients with proliferative diabetic retinopathy: A secondary
analysis of a randomized clinical trial[ J]. JAMA Ophthalmol, 2020,
138(8): 851-857.
4、Elnahry AG, Elnahry GA. Optical coherence tomography angiography
of macular perfusion changes after anti-VEGF therapy for diabetic
macular edema: A systematic review[ J]. J Diabetes Res, 2021,
2021: 6634637.
5、Karst SG, Heisler M, Lo J, et al. Evaluating signs of microangiopathy
secondary to diabetes in different areas of the retina with swept source
OCTA[ J]. Invest Ophthalmol Vis Sci, 2020, 61(5): 8.
6、Yang JY, Wang Q, Yan YN, et al. Microvascular retinal changes in
pre-clinical diabetic retinopathy as detected by optical coherence
tomographic angiography[ J]. Graefes Arch Clin Exp Ophthalmol,
2020, 258(3): 513-520.
7、Alam M, Zhang Y, Lim JI et al. Quantitative optical coherence
tomography angiography features for objective classification and
staging of diabetic retinopathy[ J]. Retina, 2020, 40(2): 322-332.
8、Laotaweerungsawat S, Psaras C, Liu X, et al. OCT angiography
assessment of retinal microvascular changes in diabetic eyes in an urban
safety-net hospital[ J]. Ophthalmol Retina, 2020, 4(4): 425-432.
9、Boned-Murillo A, Albertos-Arranz H, Diaz-Barreda MD, et al. Optical
coherence tomography angiography in diabetic patients: A systematic
review[ J]. Biomedicines, 2021, 10(1): 88.
10、Palma F, Camacho P. The role of optical coherence tomography
angiography to detect early microvascular changes in diabetic
retinopathy: a systematic review[ J]. J Diabetes Metab Disord, 2021,
20(2): 1957-1974.
11、Custo Greig E, Brigell M, Cao F, et al. Macular and peripapillary optical
coherence tomography angiography metrics predict progression in
diabetic retinopathy: a sub-analysis of TIME-2b study data[ J]. Am J
Ophthalmol, 2020, 219: 66-76.
12、Zhang B, Chou Y, Zhao X, et al. Early detection of microvascular
impairments with optical coherence tomography angiography in
diabetic patients without clinical retinopathy: A meta-analysis[ J]. Am J
Ophthalmol, 2021, 222: 226-237.
13、Kushner-Lenhoff S, Kogachi K, Mert M, et al. Capillary density and
caliber as assessed by optical coherence tomography angiography may
be significant predictors of diabetic retinopathy severity[ J]. PLoS One,
2022, 17(1): e0262996.
14、Gupta M, Rao IR, Nagaraju SP, et al. Diabetic retinopathy is a predictor
of progression of diabetic kidney disease: A systematic review and
meta-analysis[ J]. Int J Nephrol, 2022, 2022: 3922398.
15、Yeung L, Wu IW, Sun CC, et al. Early retinal microvascular
abnor malit ies in pat ients w ith chronic k idney di sease[ J].
Microcirculation, 2019, 26(7): e12555.
16、Shi R, Niu Z, Wu B, et al. Nomogram for the risk of diabetic nephropathy
or diabetic retinopathy among patients with type 2 diabetes mellitus
based on questionnaire and biochemical indicators: A cross-sectional
study[ J]. Diabetes Metab Syndr Obes, 2020, 13: 1215-1229.
17、中华医学会眼科学会眼底病学组. 我国糖尿病视网膜病变临床
诊疗指南(2014年)[ J]. 中华眼科杂志, 2014, 50(11): 851-865.
Fundus Disease Group, Chinese Ophthalmological Society. Clinical
diagnosis and treatment guidelines for diabetic retinopathy in China
(2014)[ J]. Chinese Journal of Ophthalmology, 2014, 50(11): 851-865.
18、Zhao Q, Yang WL, Wang XN, et al. Repeatability and reproducibility
of quantitative assessment of the retinal microvasculature using
optical coherence tomography angiography based on optical
microangiography[ J]. Biomed Environ Sci, 2018, 31(6): 407-412.
19、Akil H, Karst S, Heisler M, et al. Application of optical coherence
tomography angiography in diabetic retinopathy: a comprehensive
review[ J]. Can J Ophthalmol, 2019, 54(5): 519-528.
20、Gildea D. The diagnostic value of optical coherence tomography
angiography in diabetic retinopathy: a systematic review[ J]. Int
Ophthalmol, 2019, 39(10): 2413-2433.
21、Sun Z, Yang D, Tang Z, et al. Optical coherence tomography
angiography in diabetic retinopathy: an updated review[ J]. Eye (Lond),
2021, 35(1): 149-161.
22、Kornblau IS, El-Annan JF. Adverse reactions to fluorescein angiography:
A comprehensive review of the literature[ J]. Surv Ophthalmol, 2019,
64(5): 679-693.
23、Cheyne CP, Burgess PI, Broadbent DM, et al. Incidence of sightthreatening diabetic retinopathy in an established urban screening
programme: An 11-year cohort study[ J]. Diabet Med, 2021, 38(9):
e14583.
24、Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic
retinopathy and projection of burden through 2045: systematic
review and meta-analysis[ J]. Ophthalmology, 2021, 128(11):
1580-1591.
25、Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global,
regional and country-level diabetes prevalence estimates for 2021 and
projections for 2045[ J]. Diabetes Res Clin Pract, 2022, 183: 109119.