返回

眼科成像设备在接触镜适配中的应用

阅读量:8681
DOI:10.3978/j.issn.1000-4432.2021.01.01
发布日期:2020-06-30
作者:
范歆 ,黄惠敏 ,余祥乐 ,周煜恒 ,施策 ,吕帆 ,沈梅晓
展开更多

关键词

角膜
接触镜
眼科成像设备
接触镜适配

摘要

接触镜在全球的应用日益广泛,配适方法的不断进步是目前接触镜安全性、舒适性不断提高的原因之一。在接触镜适配过程中,越来越多的先进影像技术被运用于指导接触镜的配适,这些技术的出现简化了接触镜适配的过程,为临床医生进行简便、准确、个性化的接触镜适配提供了帮助,也为接触镜的个性化设计提供了参考数据。

全文

    据估计,目前全球接触镜使用人数超过1.4亿[1],随着使用人群的增多以及视光领域的发展,接触镜的适配也成为大家关注的焦点。接触镜的适配成功与否直接影响接触镜配戴的舒适性、配适后的视觉质量以及应用人群的眼部健康,正确、快速、有效地进行接触镜配适对视光行业而言非常重要[2]。使用眼前段成像仪器可以帮助临床医生更准确、快速地进行接触镜的选择和适配。临床上常用的有角膜地形图、三维眼表分析仪、眼前段光学相干断层扫描仪等。通过这些仪器,医生可以更精确地测量眼表的组织结构,并且观察观察镜片与眼表、眼睑的相互作用,为接触镜适配提供客观定量的测量手段,从而在技术手段上提升接触镜适配的效率及准确度。近年来,一些研究者已经通过眼前段成像设备观察,来客观评估接触镜的适配情况。本文将根据使用的不同镜片类型,总结归纳目前先进眼前段成像仪器在接触镜适配上的应用效果,为未来眼前段成像仪器对接触镜适配提供参考。

1 接触镜

1.1 各类接触镜简介

    接触镜作为矫正屈光不正的一种方法,已有百余年历史。随着科技和材料的发展进步,接触镜的用途也日趋广泛,并不局限于屈光不正的矫正,还可作为绷带镜[3-4]、治疗性载药载体[5]、美容用品[6],生物传感器等[7-8]。接触镜主要可以分为两大类:软性材质接触镜、硬性材质接触镜。软镜最早是在1961年由Wichterle等[9]用水凝胶(甲基丙烯酸羟乙酯,HEMA)材料成功制造的,近年来,人们将硅加入到水凝胶材料中,研发出硅水凝胶材料,大大提高了镜片的透氧性,因此软性接触镜得到了大多数人的青睐,在全球接触镜市场中占比接近90%。
    在接触镜的发展的早期,因为制作材料以玻璃为主,成功适配需要眼表良好的支撑,所以硬性透气性镜片都是覆盖角膜和巩膜的大镜片为主[10]。直到1948年,Kevin Tuohy在一次制作镜片时,不慎把巩膜部分和角膜部分分开了,他将镜片的角膜部分抛光后,发现单独的角膜部分镜片也可以进行配戴,这就是现代硬性角膜接触镜的雏形[11]。现代角膜硬性接触镜可分为一般硬性透气性接触镜(rigid gas permeable contact,RGP)、角膜塑形镜(以下简称OK镜)。
    随着透气性材料的发展,Ezekiel[12]在1983年首次描述了硬性透气性材料制作的巩膜镜,成为了现代巩膜镜的雏形。近年来,硬性高透氧性巩膜镜作为一种非手术治疗角膜扩张症、眼表疾病、屈光不正的方法,越来越受到人们的重视[13-20]。与角膜硬性透气性接触镜相比,巩膜镜将接触镜支撑点从角膜的密集神经支配处移开,以提高镜片的舒适度和稳定性,减少高阶像差,获得更稳定的视力,在配戴过程中也可以减小对中央角膜的机械压力,避免因压迫角膜而导致相关并发症的发生[17,21-23]

1.2 接触镜的验配

    在软性接触镜的适配过程中,临床医生一般根据直径、基弧、屈光力3个参数来进行选择,评估时主要通过裂隙灯评估中心定位和覆盖度、移动度、戴镜验光、主观感受[24]来评判接触镜是否适配成功。一般硬性透气性接触镜同样根据直径、基弧、屈光力3个参数来进行选择[25-26],评估时进行瞬目运动、镜片活动、中心定位、荧光素染色、戴镜验光评估。OK镜在硬镜参数基础上还需考虑光学区直径,荧光素染色时需要评估不同弧区的适配状态。临床中,巩膜镜的验配一般根据矢高进行,角膜K值反而没有那么重要,临床医生常根据总直径、光学区直径、中央泪液层厚度(镜片与角膜之间的泪液厚度)、屈光力等参数对巩膜镜进行选择,通过使用裂隙灯评估镜片后泪液厚度、着陆区适配、边缘适配、主觉验光来判断巩膜镜的适配情况[27]。临床上使用裂隙灯评估虽然经济、易行,但是存在一定的主观性,且评估不够准确。对医生来说,学习OK镜和巩膜镜的验配耗时且学习难度大。对患者来说,荧光染色有致敏风险,不断的更换试镜片试错,往往使患者不适感增强,配合度下降。

2 眼前段成像设备在软性接触镜适配中的应用

2.1 目前眼前段成像设备在软性接触镜适配中的应用

    2.1.1 基于Placido原理的角膜地形图在软性接触镜适配中的应用
    基于Placido环设计的角膜地形图仪,能够为医师提供图形化的患者角膜前表面的形图[28–30]。目前角膜地形图能为临床医生提供的参数有前角膜平均曲率、角膜高度、角膜屈光度等。
    角膜地形图仪在软镜适配中已进行了较长时间的应用。Young等[31]发现使用Medmont E300测量角膜地形能比角膜曲率计更好地预测软镜的适配成功率。在他们的研究中,角膜的曲率、形状因子(shape factor)、高度elevation、矢高(sagittal depth)等与镜片适配成功率有很强的相关性,其中角膜矢高和镜片偏心量之间的相关性最显著。但这个方式仍有一定局限性,因为测量结果不足以准确的预测软镜的最佳适配基弧。Hall等[32]分别将角膜地形图仪拍摄的第一眼位和上下鼻颞5个方向的5次扫描合成图像;第一眼位、上下鼻颞、鼻上鼻下、颞上颞下9个方向拍摄的9次扫描合成图像与仅拍摄第一眼位的图像进行对比,发现合成后的图像能覆盖更大的角膜区域,为临床医生提供更多的角膜弦长及矢高的数据,从而提高预测镜片适配度的能力。但与进行5次扫描相比,覆盖更大范围的9次扫描的结果似乎没有明显的差异。综上所述,角膜地形图仪所获得的角膜前表面参数对镜片适配过程中的镜片偏心量有较好的预测结果,但是对软镜的最佳适配基弧的预测仍存在一定的局限性,这个结果是角膜地形图仪成像范围及成像深度的局限性所导致的[31]
    2.1.2 眼前段光学相干断层扫描成像设备[33]在软性接触镜适配中的应用
    由于传统的角膜地形图不能覆盖足够大的区域,测量范围不包括角巩膜缘,因此角巩膜缘在软镜适配过程中的作用长期被忽视[34]。而相比传统的角膜曲率计或角膜摄影仪,使用眼前段光学相干断层扫描成像(OCT)技术[35-38]测量覆盖的范围更广,能够获得外周角巩膜数据,更完整地显示角膜和角巩膜缘的显微结构,还可以获得戴镜时,镜片前、后泪膜的数据,这为软性接触镜的动态适配研究提供了有价值的数据参考[39]。Karnowski等[37]将OCT与基于Placido和基于Scheimpflug的成像设备进行了比较,发现基于OCT的角膜断层图图像质量更好且测量时间更短,这些高质量的断层图像不仅可以测量角膜高度,还可以用于评估上皮厚度,泪膜功能,进行接触镜配适的静态和动态评估等。
    研究[31]表明:角膜曲率计测量结果与最佳适配软镜基弧之间相关性较弱。可能是因为角膜曲率计的测量覆盖范围仅包括角膜中央直径2~3 mm的区域,Hall等[40]通过眼前段OCT对软镜适配的研究结果表明:在对镜片适配的预测方面,角巩膜形态学参数的影响比单纯角膜形态学参数的影响更大,这可能是导致在角膜测量值相近的两眼之间软性接触镜的适配结果却不尽相同的原因之一。他们的研究还发现:OCT断层图像对于硬度更高的硅水凝胶镜片比较软的水凝胶镜片的适配预测效果更好。Kumar等[41]的研究同样证实了角巩膜形态学参数在软镜适配中的重要性。他们还发现角膜-巩膜连接处的轮廓在软镜适配中起重要作用,表明OCT成像的角膜巩膜地形图有助于预测软镜适配,且比用传统的角膜曲率计或角膜摄影仪的结果更准确。Alonso-Caneiro等[2]通过OCT观察发现软性接触镜对角巩膜缘形态的影响比对中央角膜区形态的影响更大,且在不同软镜种类中,硅水凝胶球面型接触镜所产生的影响最小。
    镜片运动和中心定位是评估镜片适配过程中充分拟合的两个关键方面。镜片运动可以作为反映镜片后泪液的指标[42],在软性接触镜配适过程中,镜片的偏心可能产生角膜覆盖不完全[43]、角膜点染[44-45]等不良影响。Cui等[46]使用超长扫描深度OCT在镜片戴入后5 min和30 min时评估中心定位和移动度有良好的重复性。在配戴的30 min时的测量结果显示大多数镜片位于颞侧和下方的位置。与戴入后5 min相比,30 min时镜片居中更好,运动更少。Cui等[47]使用超高分辨率和超长扫描深度OCT可以评估微米级的镜片运动,发现软性接触镜运动受镜片直径和基弧设计以及眼表角膜曲率半径和矢高等参数的影响。
    在配戴软性接触镜过程中,泪液在润滑眼表[48-49]、镜片运动[50]、清理眼表代谢物和氧气运输中[51]起重要作用[52-53]。Wang和Nichols等[54-55]通过超高分辨率眼前段OCT观察软性接触镜在眼表的适配情况,发现OCT能够清晰地成像镜片前和镜片后泪膜,还可以观察泪膜和泪新月[56]的变化并评估泪液动力学的变化[57]。Chen等[58]使用超高分辨率OCT观察发现滴入人工泪液后,虽然可以改善眼部舒适度,但是镜片后泪膜的厚度并没有增加。Cui等[59]发现超高分辨率眼前段OCT可以较好地评估软镜镜片边缘与眼表的贴合关系。他们观察到软镜配戴6 h后,镜片边缘的结膜重叠程度增加,镜片周边区域的镜片后泪膜厚度减少。说明软镜的边缘结构可能在镜眼之间的结膜反应和周边镜片后泪膜的变化过程中起作用。Shen等[60]使用超高分辨率和超长扫描深度OCT观察到镜片边缘处眼表形态的变化以结膜积聚和产生泪膜间隙为主要特征。不同类型的软镜会存在有不同程度的结膜积聚和不同频率的泪膜间隙。因此,可以使用OCT来指导镜片边缘的设计和验配。
    Tan等[34]分析了OCT拍摄的角巩膜缘图像后,用正交残差平方和(sum of squared orthogonalized residuals,SSRO)这一指标来量化角巩膜缘的形态。他们发现SSRO在不同象限和种族中存在显著差异,且软性接触镜配戴者在上象限和下象限的角膜-巩膜交界地形图差异越小,配戴6 h后的主观舒适度更好。
    总结而言眼前段OCT具有高精度、非接触[33]、方便快捷等优点[61],也是目前为止唯一可进行戴镜观察眼表形态[62-63]的仪器,在软镜的适配评估过程中具有较大的优势。

2.2 总结

    因为软镜的覆盖范围超过角膜缘,所以角膜缘[64]和巩膜的形态也会影响软镜的配适。现有的OCT仪器可以精确、快捷、无创的测量角巩膜轮廓数据,结合软件分析,预测最适配的软镜参数,还可以评估镜片的配适,以便做出调整。同时,还能够观察戴镜时泪膜、角膜上皮、角膜基质等的变化,增加临床医生对于软性接触镜和眼表、眼睑相互作用的了解。

3 眼前段成像设备在硬性接触镜适配中的应用

3.1 目前眼前段成像设备在硬性接触镜适配中的应用

    3.1.1 眼前段成像设备角膜硬性透气性接触镜适配中的应用
    Nosch等[65]用角膜地形图仪对于RGP的适配情况进行预测,研究结果显示:在RGP的初始适配过程中,根据图像预测的适配结果可以与有成熟经验的医生适配RGP的结果相媲美。Ramdas等[66]用Pentacam HR和Medmount E300对圆锥角膜患者测量比较后发现:中心K值,K-min,K-steep和K-flat等参数在预测基弧方面都表现良好,非中心参数K-min可以提高对全角膜硬性透气性接触镜最佳基弧的预测效果,并且可以减少试戴片的数量。Donshik等[67]采用EyeSys角膜摄影仪进行配适指导,结果显示:图像提供的数据在选择最终镜片参数方面不如试戴片试错的结果,但是在选择初始试戴片时可能有用,在圆锥角膜这类不规则角膜患者中,角膜地形图有助于确定镜片的初始基弧。Elbendary等的[68]研究证明:OCT可以成像和测量不同RGP适配模式下圆锥角膜患者的泪膜厚度,从而评估其镜片适配。
    显然,OCT可用于戴镜评估和选择硬性镜片参数,减少试戴片试错的数量,缩短适配所需时间,提高患者满意度。但是OCT对于镜片适配的评估仍存在争议。Piotrowiak等[69]认为OCT对于镜片的适配评估不如人工操作的荧光素染色法准确。可能是因为在扫描的动态过程中,镜片位置和OCT测量的位置都可能发生变化,这对于定量的结果产生了影响。
    3.1.2 眼前段成像设备在角膜塑形镜适配中的应用
    由于OK镜的矫正治疗涉及角膜形状的改变,先前的研究发现预处理的角膜形状指数[形状因子(p),偏心值€或非球面性(Q)][70–72]、初始角膜中心厚度[73]都可以作为预测矫正结果的因素[74]。Cho等[30]比较了Humphrey Atlas 991,Orbscan II,Dicon CT200,Medmont E300几种仪器测试角膜地形参数的结果,其中Humphrey和Medmont的重复性和再现性较好,Orbscan II在4种地形图仪中表现最差。
    因为角膜塑形镜直径小于角膜直径,所以在OK镜的适配中,镜片偏心是很常见的现象,这种现象主要发生在角膜的颞下象限。Chen等[75]用TMS-4角膜地形图仪测量,发现镜片偏心的大小和方向是由角膜近中心的不对称性决定的。在大多数情况下,镜片偏心的量适中,是可以接受的。如果镜片偏心量太大,可能会导致治疗后视觉质量不佳[76-78],出现光晕、眩光、视力下降、像差增加等,甚至导致角膜出现急性或慢性的并发症[79-80]。Li等[81]发现:Pentacam测出的角膜Q值[82]在鼻-颞和上-下象限之间的差异对于预测镜片偏心是一个方便和可靠的参数。与镜片正位的眼睛相比,出现镜片偏心的眼睛在鼻-颞和上-下象限的角膜Q值差异更大。这种角膜Q值的不对称性解释了为什么OK镜片很容易转移到颞侧和下侧象限。Gu等[83]用Medmont E300来测量角膜地形参数,并通过这些参数来确定镜片偏心量。结果发现表面不对称指数、角膜中心到顶点的距离(CCCV)、3~5 mm鼻侧和颞侧象限的角膜曲率差异(5 mm-Knt)和0~3 mm上下象限的角膜曲率差异(3 mm-Ksi)等参数对OK镜的镜片偏心程度预测的效果较好。Li等[84]发现:近中心的角膜高度差异(Medmont E300测量的2条子午线在8 mm弦长时的角膜高度差)越大,球面OK镜的偏心量越大,而在这种情况下,使用环曲面OK镜能减少镜片的偏心量;同时,较大直径的镜片可能有助于限制镜片偏心。连燕等[85]用超长扫描深度谱域OCT来评估OK镜的配适,认为OCT提供的二维和三维的断层图像能够显示眼表与镜片之间的配适状态,有助于理解因OK镜配适不佳而引起的相关并发症。用OCT来评估OK镜的偏心及配适松紧是客观且定量的,与传统荧光染色有较好的一致性。

3.2 总结

    因为角膜硬性透气性接触镜的直径小于水平可见虹膜直径,所以角膜的形态相较角巩膜形态更加重要。应用现有的Medmont E300,Humphrey Atlas 991,Pentacam, EyeSys,TMS-4,OCT等仪器,可以预测镜片的定位、矫正效果,减少使用试镜片的次数,提高验配效率。但使用这些仪器评估镜片的适配仍然存在争议,需要进一步研究探索。

4 眼前段成像设备在巩膜镜适配中的应用

4.1 目前眼前段成像设备在巩膜镜适配中的应用

    4.1.1 基于Placido原理的角膜地形图在巩膜镜适配中的应用
    由于OCT和三维眼表分析仪(eye surface profiler,ESP)等仪器的价格高昂,远没有角膜地形图仪那么普遍。虽然角膜地形图仪的覆盖范围有限,但是使用角膜地形图仪也可为巩膜镜的配适提供直接或间接的信息[37]。Harkness等[28]比较了OCT,ESP和Medmont E300测量矢高的结果以评估它们预测中央泪液层厚度的能力,结果表明:使用Medmont ESH软件辅助分析Medmont E300图像,在测量矢高的过程中,OCT和Medmont的测量结果没有明显差异,而ESP的测量结果明显低于这二者。Macedo-de-Araújo等[86]用Medmont E300测量了126只角膜规则和不规则的眼睛,证明角膜不对称性这一形态学参数,在规则角膜中的巩膜镜着陆区的落点有一定的预测能力。而EH Chord(与巩膜镜直径相等的弦处的矢高)是与巩膜镜矢高最相关的参数。Medmont E300可以用于矢高的测量,以预测中央泪液层厚度,但其成像范围和深度有限,且无法对戴镜时的中央泪液层厚度进行测量,所以仍存在一定的局限性。
    4.1.2 sMap3D在巩膜镜适配中的应用
    与基于Placido的角膜地形图系统不同,sMap3D是利用荧光素钠对角膜表面进行染色从而检测眼表形态。这一设备的优势在于,评估眼表形态的过程中不受巩膜镜配戴者泪膜薄、眼表形态异常、角膜瘢痕的影响。在不规则的角膜也可以测量其真实形貌,不过在测量正常角膜时可能不如基于Placido的成像系统准确[87]。在使用过程中,观察者可以使用sMap3D将上视、直视和下视的三幅图像进行拼接[87],从而弥补单张图像覆盖成像范围不足的缺陷。
    DeNaeyer等[88]研究发现:巩膜镜着陆点处与眼表的矢高值差异,通常可以预测巩膜镜配适后的中央泪液层厚度。使用sMap3D测量巩膜环曲面性和在直径16 mm处的矢高值重复性很好,且矢高测量结果与OCT测量的同类结果有很好的相关性[89],说明该设备适用于巩膜镜的配适。这种角膜-巩膜地形图极大地简化了适配过程,对于角膜和巩膜形态都异常的眼睛,根据角膜-巩膜地形图可以同时进行角膜和巩膜的贴合预测。用sMap3D在正常人群中测量角巩膜地形图[90],表明大多数受试者的巩膜形态表现出一定的不对称性,但至少1/3的受试者的巩膜形态是球面或规则的,说明大多数人的巩膜表面是环曲面。这些对巩膜形态的观察结果发现,应用后环曲面巩膜镜可以改善着陆区配适情况,提高配戴者的舒适度[91]。sMap3D对于角膜和巩膜前表面形态学参数的测量数据,可以运用于镜片的设计,对于巩膜镜矢高值也有较好的预测效果,但因为sMap3D需要使用荧光素染色,所以仍有致敏风险和临床应用的局限性。
    4.1.3 ESP在巩膜镜适配中的应用
    ESP是基于傅里叶变换轮廓术的一种新技术,利用荧光素钠染色,可以用于测量包括角膜、角膜缘和巩膜在内的整个眼前段形态[92]
Macedo-de-Araújo等[93]提出使用ESP在量化巩膜镜对眼表形态的改变有较好的作用。这项研究的初步结果表明:短期巩膜镜配戴改变了巩膜、结膜的地形,其中变化更明显的区域可能与巩膜镜的着陆区相关。且在分析的所有区域中,不规则角膜的矢高值均高于规则角膜,特别是在颞区的差异较大。Jesus等[94]用ESP获得眼前节三维形貌,加上估量的轴长,可用于巩膜半径的高精度计算,这种方法可能有助于更精确地测量眼表的形貌。
    巩膜镜偏心可导致镜眼关系的变化,包括镜片和角膜之间的泪液厚度不足导致镜片与角膜直接接触或结膜过度压迫[95]。巩膜不对称度越大可能导致镜片偏心量增加[96],其中水平子午线上的偏心量最大。而镜片偏心量越大,镜片对眼表的压迫量就越强。影响巩膜镜偏心的因素在水平和垂直子午线之间可能有所不同。巩膜测量数据中鼻颞侧不对称性与镜片水平偏心量有关。鼻部和颞部巩膜高度的差异越大,镜片颞侧偏心量越大。镜片的垂直偏心与镜片的初始泪液厚度有关,初始泪液厚度越大,镜片下侧偏心越大,这可能是因为巩膜镜的重心相对于角膜发生了前移。
    使用ESP等客观准确的眼表形态学参数测量仪器[92],可以帮助医生更好的预测巩膜镜矢高值和偏心量,避免因配适不佳而引起的并发症。但因为ESP价格高昂,且使用荧光素染色有致敏风险,所以并未在临床广泛使用。
    4.1.4 眼前段光学相干断层扫描成像设备在巩膜镜适配中的应用
    用眼前段OCT可成功测量的最关键的巩膜镜参数之一是中央泪液层厚度。此外,眼前段OCT监测、记录和量化镜片和角膜之间的泪液层厚度变化的能力,可以加深医生对巩膜镜配戴过程中镜眼之间相互影响的了解[97]
    Choi等[98]学者分析了眼前段OCT的图像,成功测量了前巩膜曲率半径。Bandlitz等[99]学者使用OCT测量了8条不同子午线上的巩膜半径,他们发现巩膜半径与角膜形态无关,巩膜最陡和最平的子午线与角膜最陡和最平的子午线分布也无关。这也就解释了为何其他研究中角膜地形参数并不能很好地预测巩膜镜基弧,而巩膜半径可以为软镜和巩膜镜的设计和配适提供有用信息。对于一些特殊的患者,如在放射状角膜切开术后、准分子激光原位角膜磨镶术后、高度散光的患者中,使用试镜法试戴巩膜镜,总是会出现气泡或过大的泪液层厚度,采用OCT所获得的角膜巩膜矢高数据,重新设计了双环曲的巩膜镜后,不再有气泡形成,且泪液层厚度也减少。眼前段OCT为巩膜镜镜片设计提供了有效的外周角膜和巩膜的测量数据,可以使用更少的数据更好地进行镜片配适,并且能够提高初次试镜成功率[100]
    在测量中央泪液层厚度方面,Yeung等[21]比较了人工使用裂隙灯显微镜的测量结果、ImageJ分析裂隙灯拍摄图片所获得的结果和OCT测量的结果,发现即使是经验丰富的观察者人工测量的结果与数字分析或AS-OCT测量结果的相关性也较低,人工测量结果比客观测量偏高,这意味着使用眼成像设备进行泪液层的精确测量有一定的必要性。目前,临床医生使用裂隙灯显微镜准确测量镜片中央泪液层厚度的水平参差不齐,再加上裂隙灯测量存在不确定性,不同的观察者,甚或只是不同的观察角度测量结果都可能存在一定的差异。McDonnell等[101]比较了裂隙灯和OCT测量中央泪液层厚度的结果,发现两者差异很大,且这个结果不能用角膜曲率的差异、巩膜镜的放大率、裂隙灯光照的角度、镜片位置等原因解释。这也证明使用OCT评估巩膜镜中央泪液层厚度的可靠性更高。
    眼前段OCT也被用于评估巩膜镜的中央泪液层厚度及其随时间变化的表现[97],评估量化巩膜镜镜片的沉降速率和沉降量,探究可能影响中央泪液层厚度变化的因素[102]。Otchere等[103]使用AS-OCT对患有圆锥角膜或角膜透明样边缘变性的巩膜镜配戴者进行了测量,观察到镜片配戴1 h后所有配戴者均出现了不同程度的泪液层厚度减少,减少速率受配戴者、初始镜片与眼表之间的适配关系和配戴时间的影响。Rathi等[104]发现患有不同眼表疾病的患者配戴巩膜镜4 h后,中央泪液层厚度都明显减少,说明适配评估应该至少在配戴4 h之后。考虑到镜片的沉降,为避免镜片与角膜接触,在选择试戴片时应该选择比所需矢高更大的镜片。且与其他的眼表疾病患者相比,角膜膨隆患者所需的镜片矢高要更大,因为配戴4h后中央泪液层厚度变化幅度更大[104]。Vincent等[105]研究发现:小直径巩膜镜(直径16.5 mm),镜片的水平和垂直偏心量在8h内呈指数衰减,偏心量在戴入镜片后2 h内快速减少,约2 h后趋于稳定,而中央泪液层厚度在2 h内快速减少,2~4 h缓慢减少,在镜片配戴4 h后趋于稳定。所以建议对于初次镜片试戴,要至少配戴4 h后稳定了再做评估。
    关于镜片正位,Ritzmann等[106]的研究结果提示巩膜镜片往往呈颞侧和下侧偏心。这是由于巩膜镜片首先落在最高的鼻侧上,为了达到平衡时,巩膜镜片会向相对较低的对侧沉降和移动。相比颞侧,鼻侧的镜片下泪液层更薄。他们还发现,在12.8 mm弦长处,前眼表形态几乎是旋转对称的,而在15.0 mm弦长处,眼表形状就变得不对称了,说明越远离角膜,眼表的形态越不对称。
    虽然OCT可以清楚地观察到镜片周边配适的细节,但镜片配戴后对下方结膜的血供影响仍然只能通过医生从裂隙灯看到的结膜是否变白来判断,具有一定的主观性,缺乏定量判断。Gimenez-Sanchis等[107]发现可以通过光学相干断层扫描血管成像[108]拍摄镜片着陆区的血流情况来判断镜片的适配情况。如果镜片周围区出现血流中断,提示配适过紧,需要重新调整,通过观察血流,可以清楚的判断镜片对眼表的压力大小,优化巩膜镜的配适,使医生能够更好地控制结膜组织作为镜片支撑物所受的影响,并评估其对血管结构的影响。
    综上所述,OCT能够运用于预测最佳适配的巩膜镜矢高,指导镜片设计,提高初次试戴镜成功率,也可以用于评估中央泪液层厚度,周边配适及着陆区血供。OCT作为唯一能够实现戴镜测量眼表参数的仪器,在巩膜镜的适配中,有特有的优势及广泛的应用前景。

4.2 总结

    目前配适巩膜镜的主要问题,是估计适当的中央泪液层厚度,既要避免与角膜接触,又要不干扰角膜生理,这就需要对于角膜和巩膜的矢高进行准确的测量。同时,还需要选择合适的巩膜镜着陆区几何形状以匹配巩膜形状,因此更需要角巩膜缘和巩膜的地形数据来进行引导配适。巩膜镜着陆于巩膜上,需要成像仪器的覆盖范围,不仅包括角膜区域,还要覆盖角膜缘和巩膜,才能更好地引导进行巩膜镜适配。应用Medmont E300,ESP,sMap3D,OCT等仪器,可以更准确地测量眼表的形态学参数,预测巩膜镜矢高和中央泪液层厚度,有助于巩膜镜的适配。

5 结语

    目前眼科成像设备在接触镜适配中有积极的指导作用,其中在镜片偏心量量化评估、戴镜后泪液层全面评估、眼表形态预测镜片周边适配等方面有独特的优势。但是目前眼科成像设备在接触镜适配中的应用并不广泛,临床上仍为裂隙灯主观评估为主,主要限制因素为眼科成像设备的高成本导致的普及困境以及量化软件的易用性及可读性不强。未来眼科成像设备在接触镜适配中的发展方向为在普及使用场景的同时,使用优化的算法结合人工智能易化成像设备的使用方式,全面、多角度地参与到通用接触镜影像指导适配的领域中,并为未来个性化设计接触镜做好前期基础。

基金

暂无基金信息

参考文献

1. Nichols JJ, Willcox MDP, Bron AJ, et al. The TFOS International workshop on contact lens discomfort: executive summary[ J]. Invest Ophthalmol Vis Sci, 2013, 54(11): TFOS7.
2. Alonso-Caneiro D, Shaw AJ, Collins MJ. Using optical coherence tomography to assess corneoscleral morphology after soft contact lens wear[ J]. Optom Vis Sci, 2012, 89(11): 1619-1626.
3. Brilakis HS, Deutsch TA. Topical tetracaine with bandage soft contact lens pain control after photorefractive keratectomy[ J]. J Refract Surg, 2000, 16(4): 444-447.
4. Ambroziak AM, Szaflik JP, Szaflik J. Therapeutic use of a silicone hydrogel contact lens in selected clinical cases[ J]. Eye Contact Lens, 2004, 30(1): 63-67.
5. Xinming L, Yingde C, Lloyd AW, et al. Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: a review[ J]. Cont Lens Anterior Eye, 2008, 31(2): 57-64.
6. Singh S, Satani D, Patel A, et al. Colored cosmetic contact lenses: an unsafe trend in the younger generation[ J]. Cornea, 2012, 31(7): 777-779.
7. Liao YT, Yao H, Lingley A, et al. A 3-μW CMOS glucose sensor for wireless contact-lens tear glucose monitoring[ J]. IEEE J Solid-State Circuits, 2012, 47(1): 335-344.
8. Thomas N, L?hdesm?ki I, Parviz BA. A contact lens with an integrated lactate sensor[ J]. Sens Actuators B, 2012, 1(162): 128-134.
9. Wichterle O, Lim D. Hydrophilic gels for biological use[ J]. Nature, 1960, 185(4706): 117-118.
10. 蔡君陆, 褚仁远. 角膜接触镜的历史[ J]. 眼科新进展, 1984(3): 207-211.
CAI JL, CHU RY. The history of contact lens[ J]. Recent Advances in Ophthalmology, 1984(3): 207-211.
11. ??lu ?, ??lu M, Giovanzana S, et al. A brief history of contact lenses[ J]. Hum Vet Med, 2011, 3(1): 33-37.
12. Ezekiel D. Gas permeable haptic lenses[ J]. Cont Lens Anterior Eye, 1983, 6(4): 158, 160-158, 161.
13. Segal O, Barkana Y, Hourovitz D, et al. Scleral contact lenses may help where other modalities fail[ J]. Cornea, 2003, 22(4): 308-310.
14. Romero-Rangel T, Stavrou P, Cotter J, et al. Gas-permeable scleral contact lens therapy in ocular surface disease[ J]. Am J Ophthalmol, 2000, 130(1): 25-32.
15. Walker MK, Bergmanson JP, Miller W L, et al. Complications and fitting challenges associated with scleral contact lenses: a review[ J]. Cont Lens Anterior Eye, 2016, 39(2): 88-96.
16. Pullum K. Rigid gas permeable scleral lenses: there has to be a bearing surface somewhere[ J]. Cont Lens Anterior Eye, 2018, 41: S29-S30.
17. Romero-Jiménez M, Flores-Rodríguez P. Utility of a semi-scleral contact lens design in the management of the irregular cornea[ J]. Cont Lens Anterior Eye, 2013, 36(3): 146-150.
18. Pullum KW, Buckley RJ. A study of 530 patients referred for rigid gas permeable scleral contact lens assessment[ J]. Cornea, 1997, 16(6): 612-622.
19. Schornack MM, Patel SV. Scleral lenses in the management of keratoconus[ J]. Eye Contact Lens, 2010, 36(1): 39-44.
20. Pullum K, Buckley R. Therapeutic and ocular surface indications for scleral contact lenses[ J]. Ocul Surf, 2007, 5(1): 40-48.
21. Yeung D, Sorbara L. Scleral lens clearance assessment w ith biomicroscopy and anterior segment optical coherence tomography[ J]. Optom Vis Sci, 2018, 95(1): 13-20.
22. Visser ES, Visser R, Van Lier HJJ, et al. Modern scleral lenses part II: patient satisfaction[ J]. Eye Contact Lens, 2007, 33(1): 21-25.
23. Severinsky B, Millodot M. Current applications and efficacy of scleral contact lenses—a retrospective study[ J]. J Optom, 2010, 3(3): 158-163.
24. 吕帆, 谢培英. 接触镜学[M]. 北京: 人民卫生出版社, 2011.
Lü F, XIE PY. Contact lens[M]. Beijing: People’s Medical Publishing House, 2011.
25. Kumbar T, Shyam Sunder T, Swati J, et al. Correlation of Back Optic Zone Radius measurement of rigid contact lenses with radiuscope and keratometer[ J]. Cont Lens Anterior Eye, 2012, 35(6): 282-284.
26. Elder KS, Benjamin WJ. Prototype base curve attachment for the topographer: what will replace the vanishing radiuscope[ J]. Optometry, 2009, 80(3): 131-137.
27. Van der Worp E. A guide to scleral lens fitting (monograph online)[EB/ OL]. [2013-12-04]. http://commons.pacificu.edu/mono/4/.
28. Harkness BM. Comparison of sagittal height measurement methods in scleral contact lens fitting[EB/OL]. [2015-11-24]. http://commons. pacificu.edu/opt/11.
29. Tang W, Collins MJ, Carney L, et al. The accuracy and precision performance of four videokeratoscopes in measuring test surfaces[ J]. Optom Vis Sci, 2000, 77(9): 483-491.
30. Cho P, Lam AKC, Mountford J, et al. The performance of four different corneal topographers on normal human corneas and its impact on orthokeratology lens fitting[ J]. Optom Vis Sci, 2002, 79(3): 175-183.
31. Young G, Schnider C, Hunt C, et al. Corneal topography and soft contact lens fit[ J]. Optom Vis Sci, 2010, 87(5): 358-366.
32. Hall A. Use of imaging technology to better understand soft contact lens fit dynamics[EB/OL]. [2014-05-27]. http://publications.aston. ac.uk/id/eprint/24468/.
33. Huang D, Swanson EA , Lin CP, et al .Optical coherence tomography[ J]. Science, 1991, 254(5035): 1178-1181.
34. Tan B, Zhou Y, Graham AD, et al. Effects of corneoscleral topography on soft contact lens performance: a pilot study[ J]. Cont Lens Anterior Eye, 2018, 41(6): 496-500.
35. Wojtkowski M. High-speed optical coherence tomography: basics and applications[ J]. Appl Opt, 2010, 49(16): D30-D61.
36. Wojtkowski M, Marcos S, Ortiz S, et al. Application of Fourier Domain OCT imaging technology to the anterior segment of the human eye// Optical coherence tomography[M]. Switzerland: Springer International Publishing, 2015: 1617.
37. Karnowski K, Kaluzny BJ, Szkulmowski M, et al. Corneal topography with high-speed swept source OCT in clinical examination[ J]. Biomed Opt Express, 2011, 2(9): 2709.
38. Grulkowski I, Gora M, Szkulmowski M, et al. Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera[ J]. Opt Express, 2009, 17(6): 4842-4858.
39. Knoll HA, Conway HD. Analysis of blink-induced vertical motion of contact lenses[ J]. Am J Optom Physiol Opt, 1987, 64(2): 153-155.
40. Hall LA, Young G, Wolffsohn JS, et al. The influence of corneoscleral topography on soft contact lens fit[ J]. Invest Ophthalmol Vis Sci, 2011, 52(9): 6801-6806.
41. Kumar P, Woretaw H. The role of corneo-scleral junction in soft contact lens fitting: Case report on nanophthalmos[ J]. Cont Lens Anterior Eye, 2019, 42(2): 226-228.
42. Chauhan A, Radke CJ. Modeling the vertical motion of a soft contact lens[ J]. Curr Eye Res, 2001, 22(2): 102-108.
43. Morrison DR, Edelhauser HF. Permeability of hydrophilic contact lenses[ J]. Invest Ophthalmol, 1972, 11(1): 58-63.
44. Kline LN, Deluca TJ. Arcuate staining[ J]. J Am Optom Assoc, 1976, 47(3): 360.
45. Guillon M, Maissa C. Bulbar conjunctival staining in contact lens wearers and non lens wearers and its association w ith symptomatology[ J]. Cont Lens Anterior Eye, 2005, 28(2): 67-73.
46. Cui L, Li M, Shen M, et al. Characterization of soft contact lens fitting using ultra-long scan depth optical coherence tomography[ J]. J Ophthalmol, 2017, 2017: 5763172.
47. Cui L, Shen M, Wang MR , et al. Micrometer-scale contact lens movements imaged by ultrahigh-resolution optical coherence tomography[ J]. Am J Ophthalmol, 2012, 153(2): 275-283.e1.
48. Little SA, Bruce AS. Postlens tear film morphology, lens movement and symptoms in hydrogel lens wearers[ J]. Ophthalmic Physiol Opt, 1994, 14(1): 65-69.
49. Little SA, Bruce AS. Osmotic determinants of postlens tear film morphology and hydrogel lens movement[ J]. Ophthalmic Physiol Opt, 1995, 15(2): 117-124.
50. Bruce AS, Mainstone JC. Lens adherence and postlens tear film changes in closed-eye wear of hydrogel lenses[ J]. Optom Vis Sci, 1996, 73(1): 28-34.
51. Wagner L, Polse K, Mandell R. Tear pumping and edema with soft contact lenses[J]. Invest Ophthalmol Vis Sci, 1980, 19(11): 1397-1400.
52. Kracher GP, Stark WJ, Hirst LW. Extended wear contact lenses for aphakia[ J]. Am J Optom Physiol Opt, 1981, 58(6): 467-471.
53. McNamara NA, Polse KA, Brand RJ, et al. Tear mixing under a soft contact lens: effects of lens diameter[ J]. Am. J. Ophthalmol, 1999, 127(6): 659-665.
54. Wang J, Fonn D, Simpson TL, et al. Precorneal and pre- and postlens tear film thickness measured indirectly with optical coherence tomography[ J]. Invest Ophthalmol Vis Sci, 2003, 44(6): 2524-2528.
55. Nichols JJ, Mitchell GL, King-smith PE. The impact of contact lens care solutions on the thickness of the tear film and contact lens[ J]. Cornea, 2005, 24(7): 825-832.
56. Le Q, Jiang C, Jiang A C, et al. The analysis of tear meniscus in soft contact lens wearers by spectral optical coherence tomography[ J]. Cornea, 2009, 28(8): 851-855.
57. Wang J, Jiao S, Ruggeri M, et al. In situ visualization of tears on contact lens using ultra high resolution optical coherence tomography[ J]. Eye Contact Lens, 2009, 35(3): 162.
58. Chen Q, Wang J, Tao A, et al. Ultrahigh-resolution measurement by optical coherence tomography of dynamic tear film changes on contact lenses[ J]. Invest Ophthalmol Vis Sci, 2010, 51(4): 1988-1993.
59. Cui L, Chen S, Zhou W, et al. Characterization of soft contact Lens edge fitting during daily Wear using ultrahigh-resolution optical coherence tomography[ J]. J Ophthalmol, 2018,2018: 3463595.
60. Shen M, Cui L, Riley C, et al. Characterization of Soft Contact Lens Edge Fitting Using Ultra-High Resolution and Ultra-Long Scan Depth Optical Coherence Tomography[ J]. Invest Ophthalmol Vis Sci, 2011, 52(7): 4091.
61. 陈鼎, 连燕, 黄芳, 等. 超高分辨率眼前节OCT评价翼状胬肉术 后绷带式角膜接触镜的治疗效果[ J]. 中华眼视光学与视觉科 学杂志, 2014, 16(3):150-154.
CHEN D, LIAN Y, HUANG F, et al. An evaluation of the therapeutic effect of the bandage contact lenses after pterygium surgery using ultra-high resolution optical coherence tomography[ J]. Chinese Journal of Optometry Ophthalmology and Visual Science, 2014, 16(3):150-154.
62. González-Méijome JM, Cervi?o A, Peixoto-de-matos SC, et al. “In situ” corneal and contact lens thickness changes with high-resolution optical coherence tomography[ J]. Cornea, 2012, 31(6): 633-638.
63. Ka?uzny BJ, Kaluzny JJ, Szkulmowska A, et al. Spectral optical coherence tomography: a new imaging technique in contact lens practice[ J]. Ophthalmic Physiol Opt, 2006, 26(2): 127-132.
64. Consejo A, Bartuzel MM, Iskander DR. Corneo-scleral limbal changes following short-term soft contact lens wear[ J]. Cont Lens Anterior Eye, 2017, 40(5): 293-300.
65. Nosch DS, Ong GL, Mavrikakis I, et al. The application of a computerised videokeratography (CVK) based contact lens fitting software programme on irregularly shaped corneal surfaces[ J]. Cont Lens Anterior Eye, 2007, 30(4): 239-248.
66. Ramdas WD, Vervaet CJWC, Bleyen I. Corneal topography for pancorneal toric edge rigid gas-permeable contact lens fitting in patients with keratoconus, and differences in age and gender[ J]. Cont Lens Anterior Eye, 2014, 37(1): 20-25.
67. Donshik PC, Reisner DS, Luistro AE. The use of computerized video keratography as an aid in fitting rigid gas permeable contact lenses[ J]. Trans Am Ophthalmol Soc, 1996, 94: 135.
68. Elbendary A M, Abou Samra W. Evaluation of rigid gas permeable lens fitting in keratoconic patients with optical coherence tomography[ J]. Graefes Arch Clin Exp Ophthalmol, 2013, 251(6): 1565-1570.
69. Piotrowiak I, Ka?u?ny BJ, Danek B, et al. Spectral optical coherence tomography vs. fluorescein pattern for rigid gas-permeable lens fit[ J]. Med Sci Monit, 2014, 20: 1137-1141.
70. Joe JJ, Marsden HJ, Edrington TB. The relationship between corneal eccentricity and improvement in visual acuity with orthokeratology[ J]. J Am Optom Assoc, 1996, 67(2): 87-97.
71. Mountford J. An analysis of the changes in corneal shape and refractive error induced by accelerated orthokeratology[ J]. Int Contact Lens Clin, 1997, 24(4): 128-144.
72. Nichols JJ, Marsich MM ,Nguyen M ,et al .Overnight orthokeratology[ J]. Optom Vis Sci, 2000, 77(5): 252-259.
73. Lui WO, Edwards MH. Orthokeratology in low myopia. Part 1: efficacy and predictability[ J]. Cont Lens Anterior Eye, 2000, 23(3): 77-89.
74. Lui WO, Edwards MH. Orthokeratology in low myopia. part 2: corneal topographic changes and safety over 100 days[ J]. Cont Lens Anterior Eye, 2000, 23(3): 90-99.
75. Chen Z, Xue F, Zhou J, et al. Prediction of Orthokeratology Lens Decentration with Corneal Elevation[ J]. Optom Vis Sci, 2017, 94(9): 903-907.
76. Wolffsohn JS, Hunt OA, Basra AK. Simplified recording of soft contact lens fit[ J]. Cont Lens Anterior Eye, 2009, 32(1): 37-42.
77. Maseedupally V, Gifford P, Lum E, et al. Central and paracentral corneal curvature changes during orthokeratology[ J]. Optom Vis Sci, 2013, 90(11): 1249-1258.
78. Yang X, Zhong X, Gong X, et al. Topographical evaluation of the decentration of orthokeratology lenses[ J]. Eye Sci, 2005, 21(3): 132- 135, 195.
79. Hsiao CH, Yeh LK, Chao AN, et al. Pseudomonas aeruginosa corneal ulcer related to overnight orthokeratology[ J]. Chang Gung Med J, 2004, 27(3): 182-187.
80. Alharbi A, La Hood D, Swarbrick HA. Overnight orthokeratology lens wear can inhibit the central stromal edema response[ J]. Invest Ophthalmol Vis Sci, 2005, 46(7): 2334-2340.
81. Li J, Yang C, Xie W, et al. Predictive role of corneal Q-value differences between nasal-temporal and superior-inferior quadrants in orthokeratology lens decentration[ J]. Medicine, 2017, 96(2): e5837.
82. Chui WS, Cho P. A comparative study of the performance of different corneal topographers on children with respect to orthokeratology practice[ J]. Optom Vis Sci, 2005, 82(5): 420-427.
83. Gu T, Gong B, Lu D, et al. Influence of corneal topographic parameters in the decentration of orthokeratology[ J]. Eye Contact Lens, 2019, 45(6): 372-376.
84. Li Z, Cui D, Long W, et al. Predictive role of paracentral corneal toricity using elevation data for treatment zone decentration during orthokeratology[ J]. Curr Eye Res, 2018, 43(9): 1083-1089.
85. 连燕, 姜珺, 沈梅晓, 等. 应用超长扫描深度谱域OCT评估夜戴 型角膜塑形镜配适状态[ J]. 中华眼视光学与视觉科学杂志, 2014, 16(2): 68-72.
LIAN Y, JIANG J, SHEN MX, et al, Evaluation of overnight orthokeratology lens fitting using ultra-long scan depth spectral domain optical coherence tomography[ J]. Chinese Journal of Optometry Ophthalmology and Visual Science, 2014, 16(2): 68-72.
86. Macedo-de-araújo R J, Amorim-de-sousa A , Queirós A , et al. Relationship of placido corneal topography data with scleral lens fitting parameters[ J]. Cont Lens Anterior Eye, 2019, 42(1): 20-27.
87. DeNaeyer G, Sanders DR, Farajian TS. Surface coverage with single vs. multiple gaze surface topography to fit scleral lenses[ J]. Cont Lens Anterior Eye, 2017, 40(3): 162-169.
88. DeNaeyer G, Sanders DR . sMap3D corneo-scleral topographer repeatability in scleral lens patients[ J]. Eye Contact Lens, 2018, 44: S259-S264.
89. Visser ES, Van der Linden BJJJ, Otten HM, et al. Medical applications and outcomes of bitangential scleral lenses[ J]. Optom Vis Sci, 2013, 90(10): 1078-1085.
90. Denaeyer G, Sanders D, van der Worp E, et al. Qualitative assessment of scleral shape patterns using a new wide field ocular surface elevation topographer[ J]. J Cont Lens Res Sci, 2017, 1(1): 12-22.
91. Visser ES, Visser R, Van Lier HJJ. Advantages of toric scleral lenses[ J]. Optom Vis Sci, 2006, 83(4): 233-236.
92. Iskander DR, Wachel P, Simpson PND, et al. Principles of operation, accuracy and precision of an eye surface profiler[ J]. Ophthalmic Physiol Opt, 2016, 36(3): 266-278.
93. Macedo-de-Araújo RJ, Van Der Worp E, González-Méijome JM. In vivo assessment of the anterior scleral contour assisted by automatic profilometry and changes in conjunctival shape after miniscleral contact lens fitting[ J]. J Optom, 2019, 12(2): 131-140.
94. Jesus DA, Kedzia R, Iskander DR. Precise measurement of scleral radius using anterior eye profilometry[ J]. Cont Lens Anterior Eye, 2017, 40(1): 47-52.
95. Fadel D. The influence of limbal and scleral shape on scleral lens design[ J]. Cont Lens Anterior Eye, 2018, 41(4): 321-328.
96. Consejo A, Behaegel J, Van Hoey M, et al. Scleral asymmetry as a potential predictor for scleral lens compression[ J]. Ophthalmic Physiol Opt, 2018, 38(6): 609-616.
97. Tom LM, Jacobs DS. Advances in anterior segment OCT for the design and fit of scleral lenses[ J]. Int Ophthalmol Clin, 2019, 59(4): 31-40.
98. Choi HJ, Lee SM, Lee JY, et al. Measurement of anterior scleral curvature using anterior segment OCT[ J]. Optom Vis Sci, 2014, 91(7): 793-802.
99. Bandlitz S, B?umer J, Conrad U, et al. Scleral topography analysed by optical coherence tomography[ J]. Cont Lens Anterior Eye, 2017, 40(4): 242-247.
100. Gemoules G. A novel method of fitting scleral lenses using high resolution optical coherence tomography[ J]. Eye Contact Lens, 2008, 34(2): 80-83.
101. Mcdonnell C, O’donnell D, O’mara L, et al. Comparison of two methods of determining central corneal vault under a scleral lens: Estimation by slit lamp biomicroscope and anterior segment OCT[ J]. Cont Lens Anterior Eye, 2018, 41: S85.
102. Le HGT, Tang M, Ridges R, et al. Pilot study for OCT guided design and fit of a prosthetic device for treatment of corneal disease[ J]. J Ophthalmol, 2012, 2012: 812034.
103. Otchere H, Jones LW, Sorbara L. Effect of time on scleral lens settling and change in corneal clearance[ J]. Optom Vis Sci, 2017, 94(9): 908-913.
104. Rathi VM, Mandathara PS, Dumpati S, et al. Change in vault during scleral lens trials assessed with anterior segment optical coherence tomography[ J]. Cont Lens Anterior Eye, 2017, 40(3): 157-161.
105. Vincent SJ, Alonso-Caneiro D, Collins MJ. The temporal dynamics of miniscleral contact lenses: Central corneal clearance and centration[ J]. Cont Lens Anterior Eye, 2018, 41(2): 162-168.
106. itzmann M, Caroline PJ, B?rret R, et al. An analysis of anterior scleral shape and its role in the design and fitting of scleral contact lenses[ J]. Cont Lens Anterior Eye, 2018, 41(2): 205-213.
107. Gimenez-Sanchis I, Palacios-Carmen B, García-Garrigós A, et al. Anterior segment optical coherence tomography angiography to evaluate the peripheral fitting of scleral contact lenses[ J]. Clin Optom (Auckl), 2018, 10: 103.
108. Kashani AH, Chen CL, Gahm J K, et al. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications[ J]. Prog Retin Eye Res, 2017, 60: 66-100.

相关文章